莫煩Matplotlib可視化第三章畫圖種類代碼學習

3.1散點圖

import matplotlib.pyplot as plt
import numpy as npn = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
T = np.arctan2(Y,X) #用于計算顏色plt.scatter(X,Y,s=75,c=T,alpha=0.5)#alpha是透明度
#plt.scatter(np.arange(5),np.arange(5))  #一條線的散點圖plt.xlim((-1.5,1.5))
plt.ylim((-1.5,1.5))
plt.xticks(())  #把x坐標刻度去掉
plt.yticks(())
plt.show()

3.2柱狀圖

import matplotlib.pyplot as plt
import numpy as npn = 12  #柱狀圖個數
X = np.arange(n)
Y1 = (1-X/float(n))*np.random.uniform(0.5,1.0,n)
Y2 = (1-X/float(n))*np.random.uniform(0.5,1.0,n)plt.bar(X,+Y1,facecolor = '#9999ff',edgecolor = 'white')
plt.bar(X,-Y2,facecolor = '#ff9999',edgecolor = 'white')for x,y in zip(X,Y1):plt.text(x+0.4,y+0.05,'%.2f'%y,ha = 'center',va = 'bottom')#+0.4,+0.05是為了標注不太擁擠,ha是橫向對齊,va是縱向對齊for x,y in zip(X,-Y2):plt.text(x+0.4,y-0.05,'-%.2f'%y,ha = 'center',va = 'top')plt.xlim(-.5,n)
plt.xticks(())
plt.ylim(-1.25,1.25)
plt.yticks(())plt.show()

3.3Contours等高線圖

import matplotlib.pyplot as plt
import numpy as npdef f(x,y):return  (1 + x /2 + x**5 + y**3)*np.exp(-x**2-y**2) #隨機高度公式n = 256
x = np.linspace(-3,3,n)
y = np.linspace(-3,3,n)
X,Y = np.meshgrid(x,y)  #網格的輸入()等高線地圖是個網格plt.contourf(X,Y,f(X,Y),8,alpha = 0.75,cmap = plt.cm.hot)   #plt.cm.hot是將數值轉換為顏色,8代表背景分成n+2類
C = plt.contour(X,Y,f(X,Y),8,colors='black',linewidths=.5)  #等高線的繪制,8代表分成n+2類(多少個等高線)
plt.clabel(C,inline=True,fontsize = 10) #標簽plt.xticks(())
plt.yticks(())
plt.show()

3.4 image圖片

import matplotlib.pyplot as plt
import numpy as np# image data
a = np.array([0.313660827978, 0.365348418405, 0.423733120134,0.365348418405, 0.439599930621, 0.525083754405,0.423733120134, 0.525083754405, 0.651536351379]).reshape(3,3)plt.imshow(a, interpolation='nearest', cmap='bone', origin='lower') #lower是遞增,upper是遞減
plt.colorbar(shrink=.92)    #壓縮了到原來的0.92plt.xticks(())
plt.yticks(())
plt.show()

3.5 3D數據

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()
ax = Axes3D(fig)    #3D坐標軸X = np.arange(-4,4,0.25)
Y = np.arange(-4,4,0.25)
X,Y = np.meshgrid(X,Y)
R = np.sqrt(X**2+Y**2)
Z = np.sin(R)ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow'))
"""
============= ================================================Argument      Description============= ================================================*X*, *Y*, *Z* Data values as 2D arrays*rstride*     Array row stride (step size), defaults to 10*cstride*     Array column stride (step size), defaults to 10*color*       Color of the surface patches*cmap*        A colormap for the surface patches.*facecolors*  Face colors for the individual patches*norm*        An instance of Normalize to map values to colors*vmin*        Minimum value to map*vmax*        Maximum value to map*shade*       Whether to shade the facecolors============= ================================================
"""
ax.contourf(X,Y,Z,zdir='z',offset=-2,cmap = 'rainbow') #等高線
ax.set_zlim(-2,2)plt.show()

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/389411.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/389411.shtml
英文地址,請注明出處:http://en.pswp.cn/news/389411.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

計算機科學必讀書籍_5篇關于數據科學家的產品分類必讀文章

計算機科學必讀書籍Product categorization/product classification is the organization of products into their respective departments or categories. As well, a large part of the process is the design of the product taxonomy as a whole.產品分類/產品分類是將產品…

es6解決回調地獄問題

本文摘抄自阮一峰老師的 http://es6.ruanyifeng.com/#docs/generator-async 異步 所謂"異步",簡單說就是一個任務不是連續完成的,可以理解成該任務被人為分成兩段,先執行第一段,然后轉而執行其他任務,等做好…

交替最小二乘矩陣分解_使用交替最小二乘矩陣分解與pyspark建立推薦系統

交替最小二乘矩陣分解pyspark上的動手推薦系統 (Hands-on recommender system on pyspark) Recommender System is an information filtering tool that seeks to predict which product a user will like, and based on that, recommends a few products to the users. For ex…

莫煩Matplotlib可視化第四章多圖合并顯示代碼學習

4.1Subplot多合一顯示 import matplotlib.pyplot as plt import numpy as npplt.figure() """ 每個圖占一個位置 """ # plt.subplot(2,2,1) #將畫板分成兩行兩列,選取第一個位置,可以去掉逗號 # plt.plot([0,1],[0,1]) # # plt.su…

python 網頁編程_通過Python編程檢索網頁

python 網頁編程The internet and the World Wide Web (WWW), is probably the most prominent source of information today. Most of that information is retrievable through HTTP. HTTP was invented originally to share pages of hypertext (hence the name Hypertext T…

Python+Selenium自動化篇-5-獲取頁面信息

1.獲取頁面title title:獲取當前頁面的標題顯示的字段from selenium import webdriver import time browser webdriver.Chrome() browser.get(https://www.baidu.com) #打印網頁標題 print(browser.title) #輸出內容:百度一下,你就知道 2.…

火種 ctf_分析我的火種數據

火種 ctfOriginally published at https://www.linkedin.com on March 27, 2020 (data up to date as of March 20, 2020).最初于 2020年3月27日 在 https://www.linkedin.com 上 發布 (數據截至2020年3月20日)。 Day 3 of social distancing.社會疏離的第三天。 As I sit on…

莫煩Matplotlib可視化第五章動畫代碼學習

5.1 Animation 動畫 import numpy as np import matplotlib.pyplot as plt from matplotlib import animationfig,ax plt.subplots()x np.arange(0,2*np.pi,0.01) line, ax.plot(x,np.sin(x))def animate(i):line.set_ydata(np.sin(xi/10))return line,def init():line.set…

data studio_面向營銷人員的Data Studio —報表指南

data studioIn this guide, we describe both the theoretical and practical sides of reporting with Google Data Studio. You can use this guide as a comprehensive cheat sheet in your everyday marketing.在本指南中,我們描述了使用Google Data Studio進行…

人流量統計系統介紹_統計介紹

人流量統計系統介紹Its very important to know about statistics . May you be a from a finance background, may you be data scientist or a data analyst, life is all about mathematics. As per the wiki definition “Statistics is the discipline that concerns the …

pyhive 連接 Hive 時錯誤

一、User: xx is not allowed to impersonate xxx 解決辦法&#xff1a;修改 core-site.xml 文件&#xff0c;加入下面的內容后重啟 hadoop。 <property><name>hadoop.proxyuser.xx.hosts</name><value>*</value> </property><property…

樂高ev3 讀取外部數據_數據就是新樂高

樂高ev3 讀取外部數據When I was a kid, I used to love playing with Lego. My brother and I built almost all kinds of stuff with Lego — animals, cars, houses, and even spaceships. As time went on, our creations became more ambitious and realistic. There were…

圖像灰度化與二值化

圖像灰度化 什么是圖像灰度化&#xff1f; 圖像灰度化并不是將單純的圖像變成灰色&#xff0c;而是將圖片的BGR各通道以某種規律綜合起來&#xff0c;使圖片顯示位灰色。 規律如下&#xff1a; 手動實現灰度化 首先我們采用手動灰度化的方式&#xff1a; 其思想就是&#…

分析citibike數據eda

數據科學 (Data Science) CitiBike is New York City’s famous bike rental company and the largest in the USA. CitiBike launched in May 2013 and has become an essential part of the transportation network. They make commute fun, efficient, and affordable — no…

jvm感知docker容器參數

docker中的jvm檢測到的是宿主機的內存信息&#xff0c;它無法感知容器的資源上限&#xff0c;這樣可能會導致意外的情況。 -m參數用于限制容器使用內存的大小&#xff0c;超過大小時會被OOMKilled。 -Xmx: 默認為物理內存的1/4。 4核CPU16G內存的宿主機 java 7 docker run -m …

Flask之flask-script 指定端口

簡介 Flask-Scropt插件為在Flask里編寫額外的腳本提供了支持。這包括運行一個開發服務器&#xff0c;一個定制的Python命令行&#xff0c;用于執行初始化數據庫、定時任務和其他屬于web應用之外的命令行任務的腳本。 安裝 用命令pip和easy_install安裝&#xff1a; pip install…

上采樣(放大圖像)和下采樣(縮小圖像)(最鄰近插值和雙線性插值的理解和實現)

上采樣和下采樣 什么是上采樣和下采樣&#xff1f; ? 縮小圖像&#xff08;或稱為下采樣&#xff08;subsampled&#xff09;或降采樣&#xff08;downsampled&#xff09;&#xff09;的主要目的有 兩個&#xff1a;1、使得圖像符合顯示區域的大小&#xff1b;2、生成對應圖…

r語言繪制雷達圖_用r繪制雷達蜘蛛圖

r語言繪制雷達圖I’ve tried several different types of NBA analytical articles within my readership who are a group of true fans of basketball. I found that the most popular articles are not those with state-of-the-art machine learning technologies, but tho…

java 分裂數字_分裂的補充:超越數字,打印物理可視化

java 分裂數字As noted in my earlier Nightingale writings, color harmony is the process of choosing colors on a Color Wheel that work well together in the composition of an image. Today, I will step further into color theory by discussing the Split Compleme…

Java 集合 之 Vector

http://www.verejava.com/?id17159974203844 import java.util.ArrayList; import java.util.Enumeration; import java.util.List; import java.util.Vector;public class Test {/*** param args the command line arguments*/public static void main(String[] args) {//打印…