樂高ev3 讀取外部數據_數據就是新樂高

樂高ev3 讀取外部數據

When I was a kid, I used to love playing with Lego. My brother and I built almost all kinds of stuff with Lego — animals, cars, houses, and even spaceships. As time went on, our creations became more ambitious and realistic. There were also times when we could each have insisted that our Lego was our own, till we realized that pooling resources would eventually help us went further. We were growing up too, and as our playing became more sophisticated, we learned how to make better models.

小時候,我曾經喜歡和樂高玩。 我的兄弟和我用樂高積木建造了幾乎所有東西-動物,汽車,房屋,甚至宇宙飛船。 隨著時間的流逝,我們的創作變得更加雄心勃勃和更加現實。 有時我們每個人都可以堅持認為樂高是我們自己的,直到我們意識到匯集資源最終將幫助我們走得更遠。 我們也在成長,隨著我們的演奏變得越來越復雜,我們學會了如何制作更好的模型。

As an aspiring data scientist, I realized that working with data is surprisingly a lot like my childhood Lego memories. In this article, I want to share some of the memories I’ve had that show how playing with Lego and working with data are closer than you think.

作為一個有抱負的數據科學家,我意識到處理數據非常像我童年時期的樂高記憶。 在本文中,我想分享一些我曾經經歷過的記憶,這些記憶表明與Lego玩游戲和處理數據的關系比您想象的要近。

探索是該過程中最有趣的部分。 (Exploration is the most fun part of the process.)

Image for post
Photo by Rick Mason on Unsplash
Rick Mason在Unsplash上拍攝的照片

When I was a kid, I liked to put all my Lego bricks together in a giant tub because a lot of fun in building something was searching through a sea of bricks and trying out new patterns that I didn’t think about before.

當我還是個孩子的時候,我喜歡將所有樂高積木放在一個巨大的浴缸中,因為建造東西的樂趣來自于在積木中尋找并嘗試了以前從未想到的新模式。

Anyone who deals with data knows that as much as 80% of the process is cleaning up the data and doing exploratory analysis. Personally, that’s what I love about working with data — that’s where I let my creativity and imagination run wild. Jumping straight into the dataset and exploring various visualizations and correlations, in search of patterns, brings me back to a childhood spent digging through a pile of Lego.

任何處理數據的人都知道,多達80%的過程正在清理數據并進行探索性分析。 就個人而言,這就是我喜歡使用數據的原因,這是我讓自己的創造力和想象力瘋狂的地方。 直接進入數據集并探索各種可視化效果和相關性,以尋找模式,這使我回到了童年時花大量時間在挖掘一堆樂高玩具上的經歷。

要構建有用的東西,您需要大量資源。 (To build something useful you need lots of resources.)

Image for post
Photo by Ryan Quintal on Unsplash
Ryan Quintal在Unsplash上拍攝的照片

If you don’t have enough Lego bricks, chances are the things you’re building aren’t realistic. The model is crude, the colors don’t match, and there are gaps. The same goes for machine learning models. If you don’t have enough data, your models are poor, and you will encounter lots of errors.

如果您沒有足夠的樂高積木,那么您正在建造的東西可能就不現實了。 模型很粗糙,顏色不匹配,并且有空隙。 機器學習模型也是如此。 如果沒有足夠的數據,則模型會很差,并且會遇到很多錯誤。

However, sometimes, I might not have the right pieces to build a model exactly the way I wanted it, so I had to search for alternatives or reconsider how to build my Lego model. Hence, I learned a new way of using what I had. Similarly, as long as you are creative about where you look, there are always insights to be gained from even the most limited data.

但是,有時候,我可能沒有合適的工具來按照我想要的方式完全構建模型,因此我不得不尋找替代方案或重新考慮如何構建Lego模型。 因此,我學到了一種使用現有物品的新方法。 同樣,只要您對自己的外觀具有創造力,即使是最有限的數據也總會獲得洞察力。

高質量的模型需要多種資源。 (A good quality model needs a diversity of resources.)

Image for post
Photo by Glen Carrie on Unsplash
Glen Carrie在Unsplash上拍攝的照片

To build a good quality Lego model, you also need a diversity of bricks. Models built with only the basic 2x4 bricks are rough and inaccurate. This is where it was so useful to get Lego from friends and family. As our family and friends gave us more Lego bricks, we got more diverse bricks that helped us create more accurate models.

要構建高質量的Lego模型,您還需要各種各樣的積木。 僅使用基本2x4磚塊構建的模型是粗糙且不準確的。 在這里,從朋友和家人那里獲得樂高玩具非常有用。 隨著我們的家人和朋友給我們提供了更多的樂高積木,我們獲得了更多種類的積木,這有助于我們創建更準確的模型。

This may also be a harsh childhood truth, that the children with the most Lego, the best pieces, and the most time to play create the best models. The same harsh truth applies to any machine learning projects. Projects with the biggest data volumes, the most diverse data, and the best teams to use the data would create the most accurate models.

這也可能是一個殘酷的童年真理,那就是樂高,最好的作品和最長時間玩耍的孩子會創造出最好的模特。 同樣的苛刻真理適用于任何機器學習項目。 數據量最大,數據種類最多,使用數據的團隊最好的項目將創建最準確的模型。

兩者都需要反復思考。 (Both require iterative thinking.)

Image for post
Photo by Kelly Sikkema on Unsplash
Kelly Sikkema在Unsplash上的照片

The beauty of Lego is that you’re not limited to what’s on the box. Rebuilding something and refining it each time requires iterative thinking. When it comes to working with data, there are also plenty of opportunities to iterate.

樂高的魅力在于,您不僅限于盒子上的東西。 每次重建和完善它們都需要反復思考。 在處理數據時,還存在很多迭代的機會。

When I get a “decent enough” solution, whether it’s a dashboard or a Python script, I still find time to break it, repair it, and keep improving. It may seem to get the job done at first, but I’m likely to be able to redesign it into something more effective and scalable.

當我得到一個“足夠體面”的解決方案時,無論是儀表板還是Python腳本,我仍然有時間打破它,對其進行修復并不斷改進。 它似乎一開始就可以完成工作,但我很可能能夠將其重新設計為更有效和可擴展的功能。

隨著您構建更多產品,您會變得更好。 (You get better as you build more.)

Image for post
Photo by Caleb Woods on Unsplash
Caleb Woods在Unsplash上拍攝的照片

Young children make rough Lego models, the colors don’t match and the shapes are wrong. On the other hand, older children build models with careful color and shape planning.

年幼的孩子會制作粗糙的Lego模型,顏色不匹配,形狀錯誤。 另一方面,年齡較大的孩子在構建模型時要仔細計劃顏色和形狀。

The same also happens with data and algorithms. As you get to know your data and algorithms, you get to understand their limitations and strive to build something better. And as the amount of data is growing, you may need to fix and adjust your models to get better and better. In other words, the same learning curve applies to Lego building and machine learning modeling.

數據和算法也是如此。 當您了解數據和算法時,您將了解它們的局限性并努力構建更好的東西。 并且,隨著數據量的增長,您可能需要修復和調整模型以變得越來越好。 換句話說,相同的學習曲線適用于樂高積木和機器學習建模。

設計很重要。 (Design is important.)

Image for post
Photo by Kristine Tumanyan on Unsplash
Kristine Tumanyan在Unsplash上拍攝的照片

The name Lego is derived from the Danish phrase ‘leg godt’, which means “play well.” Before I start building something with Lego, I will first decide if it’s something I want to display, or something I want to play with. For display-only models, I could get away with a simpler architecture, but if it was something I wanted to play with, I knew I had to make it extra robust. After all, it would be very disappointing if the wings of my spaceship fell off while I was swooshing it around the room.

樂高這個名字源自丹麥語“ leg godt” ,意思是“打得好”。 在開始使用Lego構建東西之前,我將首先決定是要顯示還是要玩的東西。 對于僅用于顯示的模型,我可以采用更簡單的體系結構,但是如果要使用它,我知道必須使其更加堅固。 畢竟,當我在房間周圍晃動時,如果我的飛船的機翼掉下來,那將是非常令人失望的。

When it comes to making a dashboard, Python script, or even a report, I often start by asking myself if this is something people will actually use (i.e. play with), or if it’s something they want to see once and never again. From there, I plan and build accordingly.

在制作儀表板,Python腳本甚至報告時,我通常會先問自己這是否是人們真正會使用(即玩弄)的東西,還是他們想一次又一次地看到的東西。 從那里,我計劃并進行相應的構建。

Image for post
Photo by Ola Syrocka on Unsplash
Ola Syrocka在Unsplash上拍攝的照片

Lego has taught me a lot about data and building models. Just like Lego:

樂高教給我很多有關數據和構建模型的知識。 就像樂高:

“To build something useful you need lots of resources, diversity, and the knowledge to build the right models in the right way.”

“要構建有用的東西,您需要大量資源,多樣性和知識,以正確的方式構建正確的模型。”

謝謝閱讀 (Thanks for Reading)

  • Follow me on Medium for more

    在更多內容中關注我

  • Let’s connect on LinkedIn

    讓我們在LinkedIn上建立聯系

If you enjoyed this, you might also like:

如果喜歡這個,您可能還會喜歡:

翻譯自: https://towardsdatascience.com/data-is-the-new-lego-bc634cc8a795

樂高ev3 讀取外部數據

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/389399.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/389399.shtml
英文地址,請注明出處:http://en.pswp.cn/news/389399.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

圖像灰度化與二值化

圖像灰度化 什么是圖像灰度化? 圖像灰度化并不是將單純的圖像變成灰色,而是將圖片的BGR各通道以某種規律綜合起來,使圖片顯示位灰色。 規律如下: 手動實現灰度化 首先我們采用手動灰度化的方式: 其思想就是&#…

分析citibike數據eda

數據科學 (Data Science) CitiBike is New York City’s famous bike rental company and the largest in the USA. CitiBike launched in May 2013 and has become an essential part of the transportation network. They make commute fun, efficient, and affordable — no…

jvm感知docker容器參數

docker中的jvm檢測到的是宿主機的內存信息,它無法感知容器的資源上限,這樣可能會導致意外的情況。 -m參數用于限制容器使用內存的大小,超過大小時會被OOMKilled。 -Xmx: 默認為物理內存的1/4。 4核CPU16G內存的宿主機 java 7 docker run -m …

Flask之flask-script 指定端口

簡介 Flask-Scropt插件為在Flask里編寫額外的腳本提供了支持。這包括運行一個開發服務器,一個定制的Python命令行,用于執行初始化數據庫、定時任務和其他屬于web應用之外的命令行任務的腳本。 安裝 用命令pip和easy_install安裝: pip install…

上采樣(放大圖像)和下采樣(縮小圖像)(最鄰近插值和雙線性插值的理解和實現)

上采樣和下采樣 什么是上采樣和下采樣? ? 縮小圖像(或稱為下采樣(subsampled)或降采樣(downsampled))的主要目的有 兩個:1、使得圖像符合顯示區域的大小;2、生成對應圖…

r語言繪制雷達圖_用r繪制雷達蜘蛛圖

r語言繪制雷達圖I’ve tried several different types of NBA analytical articles within my readership who are a group of true fans of basketball. I found that the most popular articles are not those with state-of-the-art machine learning technologies, but tho…

java 分裂數字_分裂的補充:超越數字,打印物理可視化

java 分裂數字As noted in my earlier Nightingale writings, color harmony is the process of choosing colors on a Color Wheel that work well together in the composition of an image. Today, I will step further into color theory by discussing the Split Compleme…

Java 集合 之 Vector

http://www.verejava.com/?id17159974203844 import java.util.ArrayList; import java.util.Enumeration; import java.util.List; import java.util.Vector;public class Test {/*** param args the command line arguments*/public static void main(String[] args) {//打印…

前端電子書單大分享~~~

前言 純福利, 如果你不想買很多書,只想省錢看電子書; 如果你找不到很多想看書籍的電子書版本; 那么,請保存或者下載到自己的電腦或者手機或者網盤吧。 不要太著急,連接在最后呢 前端 前端框架 node html-cs…

結構化數據建模——titanic數據集的模型建立和訓練(Pytorch版)

本文參考《20天吃透Pytorch》來實現titanic數據集的模型建立和訓練 在書中理論的同時加入自己的理解。 一,準備數據 數據加載 titanic數據集的目標是根據乘客信息預測他們在Titanic號撞擊冰山沉沒后能否生存。 結構化數據一般會使用Pandas中的DataFrame進行預處理…

比賽,幸福度_幸福與生活滿意度

比賽,幸福度What is the purpose of life? Is that to be happy? Why people go through all the pain and hardship? Is it to achieve happiness in some way?人生的目的是什么? 那是幸福嗎? 人們為什么要經歷所有的痛苦和磨難? 是通過…

帶有postgres和jupyter筆記本的Titanic數據集

PostgreSQL is a powerful, open source object-relational database system with over 30 years of active development that has earned it a strong reputation for reliability, feature robustness, and performance.PostgreSQL是一個功能強大的開源對象關系數據庫系統&am…

Django學習--數據庫同步操作技巧

同步數據庫:使用上述兩條命令同步數據庫1.認識migrations目錄:migrations目錄作用:用來存放通過makemigrations命令生成的數據庫腳本,里面的生成的腳本不要輕易修改。要正常的使用數據庫同步的功能,app目錄下必須要有m…

《20天吃透Pytorch》Pytorch自動微分機制學習

自動微分機制 Pytorch一般通過反向傳播 backward 方法 實現這種求梯度計算。該方法求得的梯度將存在對應自變量張量的grad屬性下。 除此之外,也能夠調用torch.autograd.grad 函數來實現求梯度計算。 這就是Pytorch的自動微分機制。 一,利用backward方…

React 新 Context API 在前端狀態管理的實踐

2019獨角獸企業重金招聘Python工程師標準>>> 本文轉載至:今日頭條技術博客 眾所周知,React的單向數據流模式導致狀態只能一級一級的由父組件傳遞到子組件,在大中型應用中較為繁瑣不好管理,通常我們需要使用Redux來幫助…

機器學習模型 非線性模型_機器學習模型說明

機器學習模型 非線性模型A Case Study of Shap and pdp using Diabetes dataset使用糖尿病數據集對Shap和pdp進行案例研究 Explaining Machine Learning Models has always been a difficult concept to comprehend in which model results and performance stay black box (h…

5分鐘內完成胸部CT掃描機器學習

This post provides an overview of chest CT scan machine learning organized by clinical goal, data representation, task, and model.這篇文章按臨床目標,數據表示,任務和模型組織了胸部CT掃描機器學習的概述。 A chest CT scan is a grayscale 3…

Pytorch高階API示范——線性回歸模型

本文與《20天吃透Pytorch》有所不同,《20天吃透Pytorch》中是繼承之前的模型進行擬合,本文是單獨建立網絡進行擬合。 代碼實現: import torch import numpy as np import matplotlib.pyplot as plt import pandas as pd from torch import …

vue 上傳圖片限制大小和格式

<div class"upload-box clear"><span class"fl">上傳圖片</span><div class"artistDet-logo-box fl"><el-upload :action"this.baseServerUrl/fileUpload/uploadPic?filepathartwork" list-type"pic…

作業要求 20181023-3 每周例行報告

本周要求參見&#xff1a;https://edu.cnblogs.com/campus/nenu/2018fall/homework/2282 1、本周PSP 總計&#xff1a;927min 2、本周進度條 代碼行數 博文字數 用到的軟件工程知識點 217 757 PSP、版本控制 3、累積進度圖 &#xff08;1&#xff09;累積代碼折線圖 &…