西格爾零點猜想_我從埃里克·西格爾學到的東西

西格爾零點猜想

I finished reading Eric Siegel’s Predictive Analytics. And I have to say it was an awesome read. How do I define an awesome or great book? A book that changes your attitude permanently. You must not be the same person that you were before you picked up the book. It impacts one or more aspects of your life: personal, financial, social, romantic, family, or professional. Also, I read a book only if I can use what I learn from it. I don’t read it just for the sake of learning something. It needs to be practically usable in one of the areas of my life immediately if a book has to be on my desk. So yes, this book made a big impact not only on my professional understanding of data science but it also helped me uncover my interests. There are two primary things to learn from the book. First one is from the five effects:

我讀完了Eric Siegel的Predictive Analytics 。 我不得不說這是一本很棒的書。 我如何定義一本很棒的書? 一本書可以永久改變您的態度。 您一定不能和拾起書之前的那個人一樣。 它會影響您生活的一個或多個方面:個人,財務,社交,浪漫,家庭或職業。 另外,只有在我可以使用從書本中學到的知識的情況下,我才會讀一本書。 我不只是為了學習一些東西而閱讀它。 如果必須在我的書桌上放一本書,它必須立即在我的生活中的一個領域中可用。 因此,是的,這本書不僅對我對數據科學的專業理解產生了重大影響,而且還幫助我發現了自己的興趣。 從這本書中有兩點要學習。 第一個是來自五個效果

  1. The Prediction Effect

    預測效果
  2. The Data Effect

    數據效果
  3. The Induction Effect

    感應效應
  4. The Ensemble Effect

    合奏效果
  5. The Persuasion Effect

    說服力

Without giving away the book’s ideas, Eric has hidden a lot of his experience in predictive analytics into these effects. The prediction effect proves that a lesser accurate prediction is better than a guess in business. The data effect says the data always has a story to tell and there is always something valuable to learn from it. The induction effect proves that it is the art that drives machine learning. The ensemble effect explains how the concept of synergy is useful in prediction. The persuasion effect connects marketing techniques, business-sense, and A/B testing. You might think it is all so simple and you already know it and you might be right unless you have a decade of experience in predictive analytics. And you still can learn something new in the book. Each effect is explained with real-life business cases. The book is filled with practical business results obtained from applying these effects. The most contrasting thing is he was a professor in a university but his writing style is practical, non-academic, and business-results oriented.

埃里克(Eric)在不放棄本書思想的前提下,將他在預測分析中的許多經驗隱藏在這些影響中。 預測效果證明,準確度較低的預測比業務中的猜測更好。 數據效應表明數據總是有故事要講的,總有一些值得學習的東西。 歸納效應證明,這是驅動機器學習的藝術。 合奏效應解釋了協同作用的概念如何在預測中有用。 說服效果將營銷技術,業務感知和A / B測試聯系起來。 您可能會認為它是如此簡單,并且您已經知道了,并且可能是對的,除非您在預測分析方面擁有十年的經驗。 而且您仍然可以學習這本書中的新內容。 每種效果均通過實際業務案例進行解釋。 這本書包含了通過應用這些效果而獲得的實際業務成果。 最相反的是他是大學的教授,但是他的寫作風格是務實,非學術性和商業成果導向的。

Image for post
From Eric Siegel’s Book
埃里克·西格爾的書

The second thing I learned from the book is the understanding of the subject itself. I have taken several data science courses and written short programs using Pandas, NumPy, and scikit-learn. I have built a few machine learning models and I thought I knew something. I was wrong. This book taught me the usefulness of machine learning in real-life. Writing code to build, test, and evaluate models is not understanding machine learning. This book gives a detailed explanation of what machine learning is. There is an even more detailed explanation of decision trees without a single line of code. That in itself shows the grip of Eric’s understanding of machine learning modeling. Then there is a good amount of coverage of important topics like correlation does not imply causation, how models over-learn, and why training-test data split exists. Of course, all of it with real-life business cases. What looks like business risk, Eric converts it into an opportunity using predictive analytics. There is not a page in the book where he loses the focus from using predictive analytics to solve business problems.

我從這本書中學到的第二件事是對主題本身的理解。 我參加了一些數據科學課程,并使用Pandas,NumPy和scikit-learn編寫了簡短的程序。 我建立了一些機器學習模型,我以為我知道一些。 我錯了。 這本書教會了我機器學習在現實生活中的有用性。 編寫代碼以構建,測試和評估模型并不能理解機器學習。 本書詳細介紹了什么是機器學習。 無需一行代碼,就可以更詳細地解釋決策樹。 這本身就表明了Eric對機器學習建模的理解。 然后,對重要主題的討論很多,例如相關性并不意味著因果關系模型如何過度學習以及為何存在訓練測試數據拆分 。 當然,所有這些都與真實的業務案例有關。 看起來像業務風險的Eric使用預測分析將其轉換為機會。 書中沒有一頁他會因為使用預測分析來解決業務問題而失去了重點。

My professional interests have permanently changed after reading the book. Now I am curious and very much interested in learning and finding more about how machine learning uncovers financial frauds, how a machine learning program can be applied to marketing or advertising problem in a business, and how it can be used in law enforcement. All of which I was least interested in doing before reading the book. I skipped some parts of the book but still, it was a mind-bending experience.

讀完這本書后,我的專業興趣永久地改變了。 現在,我對學習和發現更多有關機器學習如何發現財務欺詐,如何將機器學習程序應用于企業中的營銷或廣告問題以及如何在執法中使用的信息感到非常好奇和非常感興趣。 在閱讀本書之前,我最不感興趣的是所有這些。 我略過了本書的某些部分,但那仍然是一種令人難以置信的經歷。

翻譯自: https://towardsdatascience.com/what-i-learned-from-eric-siegel-1399e1e6d944

西格爾零點猜想

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/390778.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/390778.shtml
英文地址,請注明出處:http://en.pswp.cn/news/390778.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

C/C++實現刪除字符串的首尾空格

StdStringTrimTest.cpp #include <iostream> int main() {std::string str(" 字符串 String ");std::cout << str << std::endl;std::cout << str.size() << std::endl;str.erase(str.find_first_of( ), str.find_first_not_of…

assign復制對象_JavaScript標準對象:assign,values,hasOwnProperty和getOwnPropertyNames方法介紹...

assign復制對象In JavaScript, the Object data type is used to store key value pairs, and like the Array data type, contain many useful methods. These are some useful methods youll use while working with objects.在JavaScript中&#xff0c; Object數據類型用于存…

HDFS 技術

HDFS定義 Hadoop Distributed File System&#xff0c;是一個使用 Java 實現的、分布式的、可橫向擴展的文件系 統&#xff0c;是 HADOOP 的核心組件 HDFS特點 處理超大文件流式地訪問數據運行于廉價的商用機器集群上&#xff1b; HDFS 不適合以下場合&#xff1a;低延遲數據…

深度學習算法和機器學習算法_啊哈! 4種流行的機器學習算法的片刻

深度學習算法和機器學習算法Most people are either in two camps:大多數人都在兩個營地中&#xff1a; I don’t understand these machine learning algorithms. 我不了解這些機器學習算法。 I understand how the algorithms work, but not why they work. 我理解的算法是如…

Python第一次周考(0402)

2019獨角獸企業重金招聘Python工程師標準>>> 一、單選 1、Python3中下列語句錯誤的有哪些&#xff1f; A s input() B s raw_input() C print(hello world.) D print(hello world.) 2、下面哪個是 Pycharm 在 Windows 下 默認 用于“批量注釋”的快捷鍵 A Ctrl d…

express 路由中間件_Express通過示例進行解釋-安裝,路由,中間件等

express 路由中間件表達 (Express) When it comes to build web applications using Node.js, creating a server can take a lot of time. Over the years Node.js has matured enough due to the support from community. Using Node.js as a backend for web applications a…

ASP.NET 頁面之間傳值的幾種方式

對于任何一個初學者來說&#xff0c;頁面之間傳值可謂是必經之路&#xff0c;卻又是他們的難點。其實&#xff0c;對大部分高手來說&#xff0c;未必不是難點。 回想2016年面試的將近300人中&#xff0c;有實習生&#xff0c;有應屆畢業生&#xff0c;有1-3年經驗的&#xff0c…

Mapreduce原理和YARN

MapReduce定義 MapReduce是一種分布式計算框架&#xff0c;由Google公司2004年首次提出&#xff0c;并貢獻給Apache基金會。 MR版本 MapReduce 1.0&#xff0c;Hadoop早期版本(只支持MR模型)MapReduce 2.0&#xff0c;Hadoop 2.X版本&#xff08;引入了YARN資源調度框架后&a…

數據可視化圖表類型_數據可視化中12種最常見的圖表類型

數據可視化圖表類型In the current era of large amounts of information in the form of numbers available everywhere, it is a difficult task to understand and get insights from these dense piles of data.在當今時代&#xff0c;到處都是數字形式的大量信息&#xff…

三大紀律七項注意(Access數據庫)

三大紀律&#xff08;規則或范式&#xff09; 要有主鍵其他字段依賴主鍵其他字段之間不能依賴七項注意 一表一主鍵(訂單表&#xff1a;訂單號&#xff1b;訂單明細表&#xff1a;訂單號產品編號)經常查&#xff0c;建索引&#xff0c;小數據&#xff08;日期&#xff0c;數字類…

CentOS下安裝JDK的三種方法

來源&#xff1a;Linux社區 作者&#xff1a;spiders http://www.linuxidc.com/Linux/2016-09/134941.htm 由于各Linux開發廠商的不同,因此不同開發廠商的Linux版本操作細節也不一樣,今天就來說一下CentOS下JDK的安裝: 方法一&#xff1a;手動解壓JDK的壓縮包&#xff0c;然后…

MapReduce編程

自定義Mapper類 class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> &#xff5b; … }自定義mapper類都必須實現Mapper類&#xff0c;有4個類型參數&#xff0c;分別是&#xff1a; Object&#xff1a;Input Key Type-------------K1Text: Input…

統計信息在數據庫中的作用_統計在行業中的作用

統計信息在數據庫中的作用數據科學與機器學習 (DATA SCIENCE AND MACHINE LEARNING) Statistics are everywhere, and most industries rely on statistics and statistical thinking to support their business. The interest to grasp on statistics also required to become…

IOS手機關于音樂自動播放問題的解決辦法

2019獨角獸企業重金招聘Python工程師標準>>> 評估手機自帶瀏覽器不能識別 aduio標簽重的autoplay屬性 也不能自動執行play()方法 一個有效的解決方案是在微信jssdk中調用play方法 document.addEventListener("WeixinJSBridgeReady", function () { docum…

svg標簽和svg文件區別_什么是SVG文件? SVG圖片和標簽說明

svg標簽和svg文件區別SVG (SVG) SVG or Scalable Vector Graphics is a web standard for defining vector-based graphics in web pages. Based on XML the SVG standard provides markup to describe paths, shapes, and text within a viewport. The markup can be embedded…

開發人員怎么看實施人員

英文原文&#xff1a;What Developers Think Of Operations&#xff0c;翻譯&#xff1a;張紅月CSDN 在一個公司里面&#xff0c;開發和產品實施對于IS/IT的使用是至關重要的&#xff0c;一個負責產品的研發工作&#xff0c;另外一個負責產品的安裝、調試等工作。但是在開發人員…

怎么評價兩組數據是否接近_接近組數據(組間)

怎么評價兩組數據是否接近接近組數據(組間) (Approaching group data (between-group)) A typical situation regarding solving an experimental question using a data-driven approach involves several groups that differ in (hopefully) one, sometimes more variables.使…

代碼審計之DocCms漏洞分析

0x01 前言 DocCms[音譯&#xff1a;稻殼Cms] &#xff0c;定位于為企業、站長、開發者、網絡公司、VI策劃設計公司、SEO推廣營銷公司、網站初學者等用戶 量身打造的一款全新企業建站、內容管理系統&#xff0c;服務于企業品牌信息化建設&#xff0c;也適應用個人、門戶網站建設…

你讓,勛爵? 使用Jenkins聲明性管道的Docker中的Docker

Resources. When they are unlimited they are not important. But when theyre limited, boy do you have challenges! 資源。 當它們不受限制時&#xff0c;它們并不重要。 但是&#xff0c;當他們受到限制時&#xff0c;男孩你有挑戰&#xff01; Recently, my team has fa…

翻譯(九)——Clustered Indexes: Stairway to SQL Server Indexes Level 3

原文鏈接&#xff1a;www.sqlservercentral.com/articles/StairwaySeries/72351/ Clustered Indexes: Stairway to SQL Server Indexes Level 3 By David Durant, 2013/01/25 (first published: 2011/06/22) The Series 本文是階梯系列的一部分&#xff1a;SQL Server索引的階梯…