因為你的電腦安裝了即點即用_即你所愛

因為你的電腦安裝了即點即用

Data visualization is a great way to celebrate our favorite pieces of art as well as reveal connections and ideas that were previously invisible. More importantly, it’s a fun way to connect things we love — visualizing data and kicking up our feet for a movie night. All week, Nightingale is exploring the intersections between data visualization and all kinds of entertainment.

數據可視化是慶祝我們最喜歡的藝術品以及揭示以前不可見的聯系和想法的好方法。 更重要的是,這是連接我們喜歡的事物的一種有趣方式-可視化數據并為電影之夜踢起腳來。 整個晚上,夜鶯都在探索 數據可視化與各種娛樂之間 交集

Image for post

After a long day of meetings, projections, and rigorous data analysis there’s nothing I look forward to more in the evening than sitting down and fiddling with a Business Intelligence tool.

在經過漫長的一天的會議,預測和嚴格的數據分析之后,除了坐下來并擺弄一個商業智能工具之外,我沒有什么比晚上更期待的了。

Really. I’m not joking.

真。 我不是在開玩笑。

You might think I’m getting paid to say this (I’m not), but most evenings, while my girls are falling asleep next door, I’m sitting in my office in the same chair I worked in all day, building data viz in Tableau.

您可能會認為我得到這樣的報酬(我沒有),但是大多數晚上,當我的女孩們在隔壁睡著時,我正坐在辦公室里,我整天都在工作,構建數據在Tableau中。

For fun.

為了娛樂。

Because I’m making art.

因為我在做藝術。

I’m not bold enough to call myself an artist but I’ve always been into drawing. Whether it be in class, a meeting, or watching TV you’ll find a pencil in my hand and images appearing on a piece of paper. While the tools have changed over time, from a Bristol pad and Dixon Ticonderoga to iPad Pro with Magic Pencil, the art and doodling has been constant.

我沒有足夠大膽的稱呼自己是畫家,但我一直都在繪畫。 無論是在課堂上,開會還是在看電視,您都會發現我手中的鉛筆和圖像出現在紙上。 從Bristol墊和Dixon Ticonderoga到使用Magic Pencil的iPad Pro,工具隨著時間的推移而發生了變化,但藝術和涂鴉卻一直保持不變。

Let’s get back to data viz.

讓我們回到數據可視化。

I’ve been actively creating data visualization on Tableau Public for about three years now and have a portfolio of over 140 visualizations. A lot of my early work was driven by public data exercises that really helped me establish a connection to the #DataFam community as well as skill up.

大約三年來,我一直在Tableau Public上積極創建數據可視化,并且擁有140多種可視化產品組合。 我的很多早期工作都是由公共數據練習驅動的,這確實幫助我建立了與#DataFam社區的聯系以及技能。

When you’re really trying to get traction, these exercises are PERFECT. With the same tool and dataset you see hundreds of different vizzes every week. If someone else created something better/cooler/smarter than your work, the only thing keeping you from getting there is your own skillset and creativity.

當您真正想要獲得牽引力時,這些練習是完美的。 使用相同的工具和數據集,您每周可以看到數百個不同的vizz。 如果其他人創造了比您的工作更好/更酷/更聰明的東西,那么唯一使您無法實現目標的就是自己的技能和創造力。

But I started to find that community exercises didn’t always produce my best work. It’s not their fault, it’s entirely mine. If I felt uninterested in a topic or dataset I tried to make myself more interested. Bold color choices, weird chart types, lots and lots of unnecessary graphics. It was counterproductive.

但是我開始發現,社區鍛煉并不總是能產生我最好的成績。 這不是他們的錯,完全是我的。 如果我對某個主題或數據集不感興趣,我會嘗試使自己更加感興趣。 大膽的顏色選擇,奇怪的圖表類型,很多不必要的圖形。 這適得其反。

I wanted to learn AND make art.

我想學習制作藝術。

Thinking back to what originally got me excited about DataViz early in my career, I remembered a visualization by Rody Zakovich analyzing the legendary rock band Queen. Rody transformed what I thought a data viz could be.

回想起最初讓我對DataViz感到興奮的是什么,我想起了Rody Zakovich進行的可視化分析,分析了傳奇的搖滾樂隊Queen。 羅迪改變了我認為數據可視化的面貌。

Queen’s albums, weighted by words, tapering into a single point from Freddie Mercury’s spiked fist.

皇后的專輯,經言語權重,從房地美的尖銳拳頭中逐漸縮小。

(Here’s the chart, sans Mercury)

(這是圖表,無水星)

Rody Zakovich’s Queen viz blends various chart types into a rainbow of album data.

What! You can do that?

什么! 你能做到嗎?

I was taken with the cleverness and elegance of the design, but what really caught my attention was the passion. Rody had taken a topic he was personally fascinated by and elevated it with data. And it wasn’t really that hard. Yes, he used trigonometric functions to bend the lines at the bottom, but we’re really looking at 4 relatively simple charts here. BANS across the top, bar charts, a colored text table, and then some bent lines.

我被設計的巧妙和優雅所吸引,但真正引起我注意的是激情。 Rody選擇了一個他個人著迷的話題,并用數據提升了話題。 并沒有那么難。 是的,他使用三角函數在底部彎曲了線條,但是我們實際上在這里查看了4個相對簡單的圖表。 頂部有BANS,條形圖,彩色文本表,然后是一些折線。

The combination, and the passion behind it, were what captured my imagination.

這種結合以及背后的激情吸引了我的想象力。

So, the question is, why wasn’t I working on projects that covered MY interests?

因此,問題是,為什么我不從事涉及我的興趣的項目?

Cards on the table, I’ve been a geek since long before it was cool. I blasted through Jurassic Park (my first novel) in a brazen 24 hour binge as an 11-year-old. I read Star Wars expanded universe novels in middle school (in class, no less), and sketched pictures of Batman and the X-Men for friends.

桌上的牌,很早以前我就一直是個極客。 我11歲那年,在侏羅紀公園(我的第一本小說)猛烈地轟炸了24小時,狂奔地沖了進去。 我讀了中學時期的《星球大戰》(Star Wars)擴展的宇宙小說(在課堂上同樣如此),并為朋友們畫了蝙蝠俠和X戰警的照片。

While my tastes have progressed, I’m still a comic reading, sci-fi loving, pop-culture junkie. And we now live in an age where that’s become mainstream.

雖然我的品味有所提高,但我仍然是喜劇小說,科幻小說和流行文化迷。 我們現在生活在一個已成為主流的時代。

What could I learn, what could I REALLY do, if I chose to work on things that captured my attention?

如果我選擇從事引起我注意的事情,我會學到什么,我真正能做些什么?

Data viz is about translating difficult to grasp concepts into easy-to-understand visuals. While bars, BANS, lines, and maps may be the bread-and-butter of the discipline, there are other ways to express these ideas.

數據即將難于理解的概念轉換為易于理解的視覺效果。 盡管條形圖,BANS,線條和地圖可能是該學科的基礎,但還有其他表達這些思想的方法。

This led me to ideas like mapping the dreamworlds of Inception. Christopher Nolan’s complex dream-heist masterpiece can be complicated to wrap your mind around (believe me, I had to figure out how to make an image of it), but it was an EXCELLENT opportunity to practice Cartesian mapping of lines.

這使我想到了一些想法,例如繪制盜夢空間。 克里斯托弗·諾蘭(Christopher Nolan)復雜的夢he以求的杰作可能很復雜,難以纏住您的頭腦(相信我,我必須弄清楚如何制作圖像),但這是實踐笛卡爾直線映射的絕佳機會。

Inception?: The Fischer Job maps the dream-heist from Christopher Nolan’s hit film using cartesian point mapping.
https://tinyurl.com/FischerJobhttps://tinyurl.com/FischerJob

The crew executing the heist enters a series of layered dreams with one member staying behind at each level. After hitting the bottom, they wake up successively through the dreams that they’ve passed down through, ultimately (we hope) returning to the waking world.

執行搶劫的工作人員進入了一系列分層的夢想,每個成員都停留在每個級別上。 跌至谷底之后,他們通過夢passed以求的夢境中醒來,最終(我們希望)回到蘇醒的世界。

You may ask, IS this “DataViz”?

你可能會問,這 “DataViz公司”?

If your sole criteria is “does it show numerical data” then the answer might be no. But, like a map, it’s expressing the relationship between locations and taking a concept that’s difficult to describe by text and giving it a visual explanation.

如果您唯一的標準是“是否顯示數字數據”,那么答案可能是“否”。 但是,就像地圖一樣,它表達了位置之間的關系,并采用了難以用文字描述的概念,并對其進行了直觀的解釋。

At this point, you’re thinking “yeah, but I’m working in reality, not dreams”.

在這一點上,您正在思考“是的,但是我在現實中工作,而不是夢想”。

Let’s talk something more tangible, like the growth and contraction of a marketplace. In this particular case, I’d read Blake J Harris Console Wars about the early 90s marketing battles of the fledgling Sega against Nintendo.

讓我們談談更切實的事情,例如市場的增長和收縮。 在這種情況下,我讀過布雷克·J·哈里斯(Blake J Harris)的《 控制臺大戰》,內容是關于90年代初期剛成立的世嘉與任天堂之間的營銷戰。

I wanted to find a unique chart type that could show the relative sales volumes of the different console manufacturers over time, as well as illustrate the boom and bust nature of the market as a whole.

我想找到一種獨特的圖表類型,該圖表類型可以顯示不同游戲機制造商隨著時間的推移的相對銷量,并說明整個市場的繁榮和蕭條性質。

Image for post
https://tinyurl.com/BirthofGiantshttps://tinyurl.com/BirthofGiants

There are plenty of “safe” ways to express this idea, but embracing the idea of the vivid visual bombast of video games, a novel chart type was the perfect fit. I’m not a “Math guy,” and it took me about nine attempts, but I was able to correctly navigate the dozen or so layered mathematical calculations needed to create the lush waves of the console gaming market in this Stream Graph.

有很多“安全”的方式來表達這個想法,但是在擁抱視頻游戲生動視覺沖擊的想法時,一種新穎的圖表類型非常適合。 我不是一個“數學專家”,我花了大約9次嘗試,但我能夠正確地導航創建此流圖中的游戲機游戲市場的波瀾起伏所需的十幾個分層數學計算。

You’re not going to find this in the Big Book of Dashboards and it’s not a best practice chart. Having said that, it catches the eye and serves its purpose. The entry points for different companies into the marketplace (and some exist) are easy to recognize, and you can see the evolution and growth up until the peak in 2008 when Nintendo’s explosive Wii game sales topped out.

您不會在儀表盤大書中找到它,它也不是最佳實踐圖表。 話雖如此,它引起了人們的注意并達到了目的。 不同公司進入市場(有一些存在)的切入點很容易辨認,您可以看到它的發展和增長,直到2008年任天堂的爆炸性Wii游戲銷量達到頂峰時為止。

You can still have fun with some best-practice charts too.

您仍然可以通過一些最佳實踐圖表獲得樂趣。

Inspired by an episode of the sitcom Community which featured a class “Nicolas Cage: Good or Bad,” I decided to explore the Rotten Tomatoes scores for the actor’s films. Since RT includes % approval ratings from both Audiences AND Critics, I chose to analyze the gaps in perception.

受情景喜劇社區一集“ Nicolas Cage:好或壞”的啟發,我決定探索演員電影的爛番茄得分。 由于RT包含了來自受眾和評論家的認可度百分比,因此我選擇分析認知方面的差距。

Nicolas Cage?: Beyond Fresh and Rotten shows the diverging score of critics and audiences.
https://tinyurl.com/NicCageFreshandRottenhttps://tinyurl.com/NicCageFreshandRotten

This Diverging Bar chart shows us where the two types of viewers differ and agree most significantly. Outside of a couple of creative design flares and color choices, this is a perfect best-practice viz that made for a fun evening creating, and several interesting discoveries within the data along the way.

這張分散的條形圖向我們展示了兩種類型的觀看者在哪些方面截然不同,并且最為一致。 除了幾個創新的設計效果和顏色選擇之外,這是一個完美的最佳實踐,即創造了一個有趣的夜晚,并在沿途數據中發現了一些有趣的發現。

Life is short, though, and sometimes you just feel compelled to swing for the fences with a viz that breaks all of the rules. It COULD work, it could flop, but by pouring yourself into it, putting yourself out there, you find out what works and what doesn’t.

人生雖然短暫,但有時您會被迫以打破所有規則的眼光投向籬笆。 它可能會工作,但可能會失敗,但是通過將自己投入其中,放到外面,您會發現哪些有效,哪些無效。

That’s the story behind my Marty McFly timeline viz, which shows a VERY unorthodox timeline. Time travel is WEIRD. Though a character physically moves to a different period in time (forward or back) they’re always aging as they continue, and thus, their own personal timeline is always moving forward.

這就是我的Marty McFly時間軸背后的故事,它顯示了非常非傳統的時間軸。 時光旅行很奇怪。 盡管角色在身體上移動到不同的時間段(前進或后退),但隨著角色的繼續前進,它們總是在老化,因此,他們自己的個人時間表總是在前進。

The McFly Timeline shows two types of time data simultaneously.
https://tinyurl.com/McFlyTimelinehttps://tinyurl.com/McFlyTimeline

With each of these projects I learned something new about what did (or didn’t) work, and in many cases tried new techniques I wouldn’t have had the opportunity to try at work.

通過這些項目中的每一個,我都學到了一些新的東西(關于什么起作用(或不起作用)),并且在許多情況下嘗試使用新技術,我將沒有機會嘗試工作。

Had I not been as invested and curious about the subjects as I am, I know (I have the vizzes to prove it) I wouldn’t have created something as interesting.

如果我不像以前那樣對課題感到投入和好奇,我知道(我有證明自己的決心)我不會創造出那么有趣的東西。

Self-development, even through fun topics and unorthodox charts, is a journey. You’re still going to put in hours on evenings and weekends, and results aren’t immediate. If you doubt me, feel free to look back through my Tableau Portfolio, you’ll see plenty of clunkers. However, if you treat yourself to projects that you are passionate about, you’ll find yourself picking up neat tricks, greater speed, and a new zeal that will cross over into your day job in an amazing way.

即使通過有趣的話題和不合常規的圖表,自我發展也是一段旅程。 您仍然會在晚上和周末花幾個小時,結果不是立竿見影的。 如果您對我表示懷疑,請隨時回顧我的Tableau產品組合,您會發現很多陳舊的東西。 但是,如果您對自己熱衷的項目善待自己,就會發現自己掌握了絕妙的技巧,更快的速度和一種新的熱情,這些熱情將以驚人的方式滲透到您的日常工作中。

Viz your passion. It’ll transform your work, boost your learning, and create a portfolio you’re proud of.

查看您的熱情。 它會改變您的工作,促進您的學習,并創建您引以為傲的作品集。

Image for post

Zach Bowders is a data analyst, aspiring artist, and host of the Data+Love Podcast. His Portfolio can be viewed on Tableau Public at https://public.tableau.com/profile/zach.bowders#!/

Zach Bowders是一位數據分析師,有抱負的藝術家,并且是Data + Love Podcast的主持人。 可以在Tableau Public上通過 https://public.tableau.com/profile/zach.bowders#!/ 查看他的作品集。

Image for post

翻譯自: https://medium.com/nightingale/viz-what-you-love-4db256435456

因為你的電腦安裝了即點即用

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/389768.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/389768.shtml
英文地址,請注明出處:http://en.pswp.cn/news/389768.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

關于前端緩存問題

Cookie、localStorage、sessionStorage的異同 之前沒怎接觸過前端緩存,請教了前端同事之后他給我粘了幾行代碼,用localStorage存取信息,后來老大review代碼的時候發現,被批了一頓,現在好好看看這幾個前端緩存的區別&am…

2074. 反轉偶數長度組的節點

2074. 反轉偶數長度組的節點 給你一個鏈表的頭節點 head 。 鏈表中的節點 按順序 劃分成若干 非空 組,這些非空組的長度構成一個自然數序列(1, 2, 3, 4, …)。一個組的 長度 就是組中分配到的節點數目。換句話說: 節點 1 分配給…

阿里云云服務器硬盤分區及掛載

云服務器環境:CentOS 6.2 64位 客戶端環境:Mac OSX 遠程連接方式:運行 Terminal,輸入命令 ssh usernameip 硬盤分區及掛載操作步驟: 查看未掛載的硬盤(名稱為/dev/xvdb)fdisk -l Disk /dev/xvdb…

團隊管理新思考_需要一個新的空間來思考討論和行動

團隊管理新思考andrew wong安德魯黃 Follow跟隨 Sep 4 九月4 There is a need for a new space to think, discuss, and act. This need are being felt by the majority of AI / ML / Data Product Managers out there. They are exhausted by the ever increasing data volum…

Uva201

原題地址:https://uva.onlinejudge.org/index.php?optioncom_onlinejudge&Itemid9 題意: 就是要你輸入一系列橫邊的起始點,和豎邊的起始點,然后你去找出這些邊里面構成的所有正方形。 心得體會 一道難度適中的模擬題&#xf…

2075. 解碼斜向換位密碼

2075. 解碼斜向換位密碼 字符串 originalText 使用 斜向換位密碼 ,經由 行數固定 為 rows 的矩陣輔助,加密得到一個字符串 encodedText 。 originalText 先按從左上到右下的方式放置到矩陣中。 先填充藍色單元格,接著是紅色單元格&#xff…

微服務實戰(六):落地微服務架構到直銷系統(事件存儲)

在CQRS架構中,一個比較重要的內容就是當命令處理器從命令隊列中接收到相關的命令數據后,通過調用領域對象邏輯,然后將當前事件的對象數據持久化到事件存儲中。主要的用途是能夠快速持久化對象此次的狀態,另外也可以通過未來最終一…

時間序列數據的多元回歸_清理和理解多元時間序列數據

時間序列數據的多元回歸No matter what kind of data science project one is assigned to, making sense of the dataset and cleaning it always critical for success. The first step is to understand the data using exploratory data analysis (EDA)as it helps us crea…

vue-cli搭建項目的目錄結構及說明

vue-cli基于webpack搭建項目的目錄結構 build文件夾 ├── build // 項目構建的(webpack)相關代碼 │ ├── build.js // 生產環境構建代碼(在npm run build的時候會用到這個文件夾)│ ├── check-versions.js // 檢查node&am…

391. 完美矩形

391. 完美矩形 給你一個數組 rectangles ,其中 rectangles[i] [xi, yi, ai, bi] 表示一個坐標軸平行的矩形。這個矩形的左下頂點是 (xi, yi) ,右上頂點是 (ai, bi) 。 如果所有矩形一起精確覆蓋了某個矩形區域,則返回 true ;否…

bigquery 教程_bigquery挑戰實驗室教程從數據中獲取見解

bigquery 教程This medium article focusses on the detailed walkthrough of the steps I took to solve the challenge lab of the Insights from Data with BigQuery Skill Badge on the Google Cloud Platform (Qwiklabs). I got access to this lab in the Google Cloud R…

學習linux系統到底有沒捷徑?

2019獨角獸企業重金招聘Python工程師標準>>> 說起linux操作系,可能對于很多不了解的人來說,第一個想到的就是類似于黑客帝國中的黑框框以及一串串不知所云的代碼,總之這些感覺都可以總結成為一個字,那就是——酷&#…

機器學習之路:python k近鄰回歸 預測波士頓房價

python3 學習機器學習api 使用兩種k近鄰回歸模型 分別是 平均k近鄰回歸 和 距離加權k近鄰回歸 進行預測 git: https://github.com/linyi0604/MachineLearning 代碼: 1 from sklearn.datasets import load_boston2 from sklearn.cross_validation import train_test_…

大話數據結構 (程杰 著)

1轉載于:https://www.cnblogs.com/revoid/p/9605734.html

wxpython實現界面跳轉

wxPython實現Frame之間的跳轉/更新的一種方法 wxPython是Python中重要的GUI框架,下面通過自己的方法實現模擬類似PC版微信登錄,并跳轉到主界面(朋友圈)的流程。 (一)項目目錄 【說明】 icon : 保存項目使用…

java職業技能了解精通_如何通過精通數字分析來提升職業生涯的發展,第8部分...

java職業技能了解精通Continuing from the seventh article in this series, we are going to explore ways to present data. Over the past few years, Marketing and SEO field has become more data-driven than in the past thanks to tools like Google Webmaster Tools …

2028. 找出缺失的觀測數據

2028. 找出缺失的觀測數據 現有一份 n m 次投擲單個 六面 骰子的觀測數據,骰子的每個面從 1 到 6 編號。觀測數據中缺失了 n 份,你手上只拿到剩余 m 次投擲的數據。幸好你有之前計算過的這 n m 次投擲數據的 平均值 。 給你一個長度為 m 的整數數組 …

51nod 1250 排列與交換——dp

題目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId1250 仔細思考dp。 第一問,考慮已知 i-1 個數有多少種方案。再放入一個數,它是最大的且在最后面,所以它的位置不同的話,就是不同的方案。它在特定…

BZOJ.1024.[SCOI2009]生日快樂(記憶化搜索)

題目鏈接 搜索,枚舉切的n-1刀。 對于長n寬m要切x刀,可以劃分為若干個 長n寬m要切x刀 的子問題,對所有子問題的答案取max 對所有子問題的方案取min 就是當前狀態答案。 這顯然是會有很多重復狀態的,用map記憶化(長寬都是double)。 …

kfc流程管理炸薯條幾秒_炸薯條成為數據科學的最后前沿

kfc流程管理炸薯條幾秒In February, our Data Science team had an argument about which restaurant we went to made the best French Fry.2月,我們的數據科學團隊對我們去哪家餐廳做得最好的炸薯條產生了爭議。 We decided to make it a competition throughout…