L U LU LU分解
前言
L U LU LU分解 由以下定理得以保證:
設 A \boldsymbol{A} A為 n n n階方陣,若其各界階順序主子式都不為 0 0 0,那么它可以
被唯一的上下三角矩陣積分解。
步驟
確定各矩陣形式 A = L U \mathbf{A}=\mathbf{LU} A=LU
( a 11 a 12 ? a 1 n a 21 a 22 ? a 2 n ? ? ? ? a n 1 a n 2 ? a n n ) = ( 1 0 ? 0 l 21 1 ? 0 ? ? ? ? l n 1 l n 2 ? 1 ) ( u 11 u 12 ? u 1 n 0 u 22 ? u 2 n ? ? ? ? 0 0 ? u n n ) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}=\begin{pmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{pmatrix} ?a11?a21??an1??a12?a22??an2???????a1n?a2n??ann?? ?= ?1l21??ln1??01?ln2???????00?1? ? ?u11?0?0?u12?u22??0??????u1n?u2n??unn?? ?
根據矩陣乘法得到,各個元素的計算公式:
Step 1:計算 U U U的第一行元素: a 1 i = u 1 i a_{1i}=u_{1i} a1i?=u1i?
Step 2:計算 L L L的第一列元素:
a i 1 = l i 1 u 11 a_{i1}=l_{i1}u_{11} ai1?=li1?u11?
Step 3:
根據給出的 U \mathbf{U} U的第 1 1 1行到第 r ? 1 r-1 r?1行與 L \mathbf{L} L的第 1 1 1列到第 r ? 1 r-1 r?1列求第 r r r行列元素:
a r i = ∑ k = 1 n l r k u k i = ∑ k = 1 r ? 1 l r k u k i + u r i a_{ri}=\sum_{k=1}^{n}l_{rk}u_{ki}=\sum_{k=1}^{r-1}l_{rk}u_{ki}+u_{ri} ari?=k=1∑n?lrk?uki?=k=1∑r?1?lrk?uki?+uri?
a i r = ∑ k = 1 n l i k u k r = ∑ k = 1 r ? 1 l i k u k r + l i r u r r a_{ir}=\sum_{k=1}^{n}l_{ik}u_{kr}=\sum_{k=1}^{r-1}l_{ik}u_{kr}+l_{ir}u_{rr} air?=k=1∑n?lik?ukr?=k=1∑r?1?lik?ukr?+lir?urr?
然后使用換元法,逐步解決線性方程組的求解:
A x = b ? { L y = b U x = y \mathbf{Ax}=\mathbf{b}\Rightarrow \begin{cases} \mathbf{Ly}=\mathbf{b}\\ \mathbf{Ux}=\mathbf{y} \end{cases} Ax=b?{Ly=bUx=y?
例
請使用 L U LU LU分解方法求解線性方程組:
( 2 3 0 1 6 7 1 5 2 ? 1 3 3 2 ? 1 1 8 ) ( x 1 x 2 x 3 x 4 ) = ( ? 5 ? 11 7 ? 2 ) \begin{pmatrix} 2 & 3 & 0 & 1 \\ 6 & 7 & 1 & 5 \\ 2 & -1 & 3 & 3 \\ 2 & -1 & 1 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\\ \end{pmatrix}= \begin{pmatrix} -5 \\ -11 \\ 7 \\ -2 \end{pmatrix} ?2622?37?1?1?0131?1538? ? ?x1?x2?x3?x4?? ?= ??5?117?2? ?
解
( 2 3 0 1 6 7 1 5 2 ? 1 3 3 2 ? 1 1 8 ) = ( 1 l 21 1 l 31 l 32 l 33 l 41 l 42 l 43 1 ) ( u 11 u 12 u 13 u 14 u 22 u 23 u 24 u 33 u 34 u 44 ) \begin{pmatrix} 2 & 3 & 0 & 1 \\ 6 & 7 & 1 & 5 \\ 2 & -1 & 3 & 3 \\ 2 & -1 & 1 & 8 \end{pmatrix}= \begin{pmatrix} 1 & & & \\ l_{21} & 1 & & \\ l_{31} & l_{32} & l_{33} & \\ l_{41} & l_{42} & l_{43} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} &u_{13} &u_{14} \\ & u_{22} &u_{23} & u_{24} \\ & & u_{33} &u_{34} \\ & & & u_{44} \end{pmatrix} ?2622?37?1?1?0131?1538? ?= ?1l21?l31?l41??1l32?l42??l33?l43??1? ? ?u11??u12?u22??u13?u23?u33??u14?u24?u34?u44?? ?
注意到
對于系數矩陣第一行:
( 2 3 0 1 6 7 1 5 2 ? 1 3 3 2 ? 1 1 8 ) = ( 1 l 21 1 l 31 l 32 l 33 l 41 l 42 l 43 1 ) ( 2 3 0 1 u 22 u 23 u 24 u 33 u 34 u 44 ) \begin{pmatrix} 2 & 3 & 0 & 1 \\ 6 & 7 & 1 & 5 \\ 2 & -1 & 3 & 3 \\ 2 & -1 & 1 & 8 \end{pmatrix}= \begin{pmatrix} 1 & & & \\ l_{21} & 1 & & \\ l_{31} & l_{32} & l_{33} & \\ l_{41} & l_{42} & l_{43} & 1 \end{pmatrix} \begin{pmatrix} 2 & 3&0 &1 \\ & u_{22} &u_{23} & u_{24} \\ & & u_{33} &u_{34} \\ & & & u_{44} \end{pmatrix} ?2622?37?1?1?0131?1538? ?= ?1l21?l31?l41??1l32?l42??l33?l43??1? ? ?2?3u22??0u23?u33??1u24?u34?u44?? ?
對于系數矩陣第一列:
( 2 3 0 1 6 7 1 5 2 ? 1 3 3 2 ? 1 1 8 ) = ( 1 3 1 1 l 32 l 33 1 l 42 l 43 1 ) ( 2 3 0 1 u 22 u 23 u 24 u 33 u 34 u 44 ) \begin{pmatrix} 2 & 3 & 0 & 1 \\ 6 & 7 & 1 & 5 \\ 2 & -1 & 3 & 3 \\ 2 & -1 & 1 & 8 \end{pmatrix}= \begin{pmatrix} 1 & & & \\ 3 & 1 & & \\ 1& l_{32} & l_{33} & \\ 1 & l_{42} & l_{43} & 1 \end{pmatrix} \begin{pmatrix} 2 & 3&0 &1 \\ & u_{22} &u_{23} & u_{24} \\ & & u_{33} &u_{34} \\ & & & u_{44} \end{pmatrix} ?2622?37?1?1?0131?1538? ?= ?1311?1l32?l42??l33?l43??1? ? ?2?3u22??0u23?u33??1u24?u34?u44?? ?
遞推得到:
( 2 3 0 1 6 7 1 5 2 ? 1 3 3 2 ? 1 1 8 ) = ( 1 3 1 1 2 1 1 2 ? 1 1 ) ( 2 3 0 1 ? 2 1 2 1 ? 2 1 ) \begin{pmatrix} 2 & 3 & 0 & 1 \\ 6 & 7 & 1 & 5 \\ 2 & -1 & 3 & 3 \\ 2 & -1 & 1 & 8 \end{pmatrix}= \begin{pmatrix} 1 & & & \\ 3 & 1 & & \\ 1& 2 & 1 & \\ 1 & 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3&0 &1 \\ & -2 &1 & 2 \\ & & 1 &-2 \\ & & & 1 \end{pmatrix} ?2622?37?1?1?0131?1538? ?= ?1311?122?1?1?1? ? ?2?3?2?011?12?21? ?
做換元:
A x = b ? { L y = b U x = y \mathbf{Ax}=\mathbf{b}\Rightarrow \begin{cases} \mathbf{Ly}=\mathbf{b}\\ \mathbf{Ux}=\mathbf{y} \end{cases} Ax=b?{Ly=bUx=y?
得到:
y = ( y 1 y 2 y 3 y 4 ) = ( ? 5 4 4 ? 1 ) \mathbf{y}=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}=\begin{pmatrix} -5 \\ 4 \\ 4 \\ -1 \end{pmatrix} y= ?y1?y2?y3?y4?? ?= ??544?1? ?
x = ( x 1 x 2 x 3 x 4 ) = ( 1 ? 2 2 ? 1 ) \mathbf{x}= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}=\begin{pmatrix} 1 \\ -2 \\ 2 \\ -1 \end{pmatrix} x= ?x1?x2?x3?x4?? ?= ?1?22?1? ?