題目一:跨設備分布式數據同步
需求描述
開發一個分布式待辦事項應用,要求:
- 手機與平板登錄同一華為賬號時,自動同步任務列表
- 任一設備修改任務狀態(完成/刪除),另一設備實時更新
- 任務數據在設備離線時能本地存儲,聯網后自動同步
實現方案
// 1. 定義分布式數據模型
import distributedData from '@ohos.data.distributedData';class TodoItem {id: string;content: string;isCompleted: boolean = false;timestamp: number = new Date().getTime();
}// 2. 創建分布式數據表
const kvManager = distributedData.createKVManager({bundleName: 'com.example.todo',options: {securityLevel: distributedData.SecurityLevel.S1,isEncrypted: true}
});const kvStore = await kvManager.getKVStore<distributedData.SingleKVStore>('todo_store', {createIfMissing: true,encrypt: true,backup: false,autoSync: true
});// 3. 數據監聽與同步
kvStore.on('dataChange', distributedData.SubscribeType.SUBSCRIBE_TYPE_ALL, (data) => {data.insertions.forEach(item => {// 處理新增/更新const todo = JSON.parse(item.value as string) as TodoItem;updateLocalUI(todo);});data.deletions.forEach(key => {// 處理刪除removeFromLocalUI(key);});
});// 4. 數據操作封裝
async function addTodo(content: string) {const todo = new TodoItem();todo.id = generateUUID();todo.content = content;await kvStore.put(todo.id, JSON.stringify(todo));
}async function toggleTodo(id: string) {const entry = await kvStore.get(id);if (entry) {const todo: TodoItem = JSON.parse(entry.value as string);todo.isCompleted = !todo.isCompleted;await kvStore.put(id, JSON.stringify(todo));}
}
技術要點:
- 使用
@ohos.data.distributedData
實現跨設備數據同步 - 配置數據安全級別(S1-S4)與加密策略
- 處理網絡斷連時的本地緩存與自動恢復機制
題目二:高性能列表渲染優化
需求描述
實現一個包含10,000+條目的通訊錄列表,要求:
- 滾動幀率穩定在60FPS
- 快速滑動時無白屏
- 支持拼音首字母快速定位
優化實現
// 1. 使用LazyForEach + 緩存池
@Component
struct ContactList {@State contacts: Contact[] = [];build() {List() {LazyForEach(this.contacts, (item: Contact) => {ListItem() {ContactItem({ contact: item }) // 復用組件.cachedCount(10) // 緩存10個ListItem}}, (item) => item.id)}.listDirection(Axis.Vertical).edgeEffect(EdgeEffect.None) // 禁用邊緣效果}
}// 2. 字母索引快速跳轉
class IndexBar {private scroller: Scroller = new Scroller();jumpToSection(key: string) {const index = this.findFirstIndex(key);this.scroller.scrollToIndex(index);}private findFirstIndex(key: string): number {// 二分查找優化let low = 0, high = contacts.length - 1;while (low <= high) {const mid = Math.floor((low + high) / 2);if (contacts[mid].pinyin[0] < key) {low = mid + 1;} else {high = mid - 1;}}return low;}
}// 3. 內存優化策略
class ContactItem {@ObjectLink contact: Contact;aboutToReuse(params: Record<string, Object>) {// 復用前重置狀態this.contact = params.contact as Contact;}
}
性能優化點:
- 使用
LazyForEach
+cachedCount
減少內存占用 - 滾動時禁用復雜動效
- 字母索引采用二分查找算法優化定位速度
- 組件復用池減少GC壓力
題目三:原子化服務卡片開發
需求描述
開發一個天氣服務卡片,要求:
- 支持在桌面上顯示實時天氣
- 卡片尺寸適配2x2、2x4布局
- 點擊卡片跳轉到應用詳情頁
實現代碼
// 1. 定義卡片配置
"forms": [{"name": "weather_card","description": "實時天氣卡片","src": "./ets/widget/WeatherCard.ets","uiSyntax": "arkts","window": {"designWidth": 720,"autoDesignWidth": true},"colorMode": "auto","isDefault": true,"updateEnabled": true,"scheduledUpdateTime": "10:00","formConfigAbility": "WeatherWidgetConfig"}
]// 2. 卡片UI組件
@Entry
@Component
struct WeatherCard {@LocalStorageProp('weatherData') weather: WeatherData = new WeatherData();build() {Column() {Text(this.weather.temperature).fontSize(24)Text(this.weather.city).fontSize(16)Image(this.weather.icon).width(48).height(48)}.onClick(() => {postCardAction({action: {bundleName: 'com.example.weather',abilityName: 'MainAbility',params: { }}});})}
}// 3. 卡片數據更新
import formProvider from '@ohos.app.form.formProvider';function updateWeatherCard(formId: string) {const newData = {"temperature": "26℃","city": "北京","icon": "cloudy.png"};formProvider.updateForm(formId, newData).catch(err => console.error('Update form failed: ' + JSON.stringify(err)));
}
關鍵技術:
- 卡片生命周期管理(
onCreate
/onDestroy
) - 使用
LocalStorage
實現數據綁定 - 定時更新與被動更新策略結合
- 多尺寸布局適配方案
題目四:Native C++性能優化
需求描述
優化圖像處理模塊性能:
- 將耗時圖像濾鏡算法從TS遷移到C++
- 實現多線程加速處理
- 內存占用降低30%
混合開發實現
// 1. 原生層C++代碼 (native_filter.cpp)
#include <hilog/log.h>
#include <multimedia/image/image_pixel_map.h>extern "C" {void ApplyGaussianBlur(OH_ImagePixelMap* pixelMap, int radius) {// 獲取像素數據uint32_t width = OH_ImagePixelMap_GetWidth(pixelMap);uint32_t height = OH_ImagePixelMap_GetHeight(pixelMap);uint8_t* pixels = OH_ImagePixelMap_GetPixels(pixelMap);// SIMD優化算法#pragma omp parallel for collapse(2)for (int y = 0; y < height; y++) {for (int x = 0; x < width; x++) {// 高斯模糊計算...}}}
}// 2. TS層調用
import native from 'libnative.so';function processImage(pixelMap: image.PixelMap) {const nativePixelMap = pixelMap.getNativePixelMap();native.ApplyGaussianBlur(nativePixelMap, 5);
}
優化策略:
- 使用OpenMP實現多線程并行計算
- 基于NEON指令集實現SIMD優化
- 原生內存池減少JNI傳輸開銷
- 像素處理算法復雜度從O(n2)優化至O(n)