YOLOv8 YoLov8l 模型輸出及水果識別

🍨 本文為[🔗365天深度學習訓練營學習記錄博客
🍦 參考文章:365天深度學習訓練營
🍖 原作者:[K同學啊 | 接輔導、項目定制]
🚀 文章來源:[K同學的學習圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

YoLov8l?的模型輸出:

from  n    params  module                                       arguments0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]22        [15, 18, 21]  1   5585884  ultralytics.nn.modules.head.Detect           [4, [256, 512, 512]]
YOLOv8l summary: 365 layers, 43632924 parameters, 43632908 gradients, 165.4 GFLOPs

命令窗中輸入以下命令使用YoLov8l 模型進行數據集訓練:

命令模板:

D:\ultralytics-main\ultralytics-main>yolo task=detect mode =train model=yolov8l.yaml data=D:\ultralytics-main\ultralytics-main\paper_data\ab.yaml epochs=100 batch=4

訓練結果:?

D:\ultralytics-main\ultralytics-main>yolo task=detect mode =train model=yolov8l.yaml data=D:\ultralytics-main\ultralytics-main\paper_data\ab.yaml epochs=100 batch=4from  n    params  module                                       arguments0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]22        [15, 18, 21]  1   5644480  ultralytics.nn.modules.head.Detect           [80, [256, 512, 512]]
YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsNew https://pypi.org/project/ultralytics/8.0.225 available  Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.0.200  Python-3.10.7 torch-2.0.1+cpu CPU (AMD Ryzen 7 4800U with Radeon Graphics)
engine\trainer: task=detect, mode=train, model=yolov8l.yaml, data=D:\ultralytics-main\ultralytics-main\paper_data\ab.yaml, epochs=100, patience=50, batch=4, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train2
Overriding model.yaml nc=80 with nc=4from  n    params  module                                       arguments0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]22        [15, 18, 21]  1   5585884  ultralytics.nn.modules.head.Detect           [4, [256, 512, 512]]
YOLOv8l summary: 365 layers, 43632924 parameters, 43632908 gradients, 165.4 GFLOPsTensorBoard: Start with 'tensorboard --logdir runs\detect\train2', view at http://localhost:6006/
Freezing layer 'model.22.dfl.conv.weight'
train: Scanning D:\ultralytics-main\ultralytics-main\paper_data\labels... 177 images, 0 backgrounds, 0 corrupt: 100%|██
train: New cache created: D:\ultralytics-main\ultralytics-main\paper_data\labels.cache
val: Scanning D:\ultralytics-main\ultralytics-main\paper_data\labels... 23 images, 0 backgrounds, 0 corrupt: 100%|█████
val: New cache created: D:\ultralytics-main\ultralytics-main\paper_data\labels.cache
Plotting labels to runs\detect\train2\labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.00125, momentum=0.9) with parameter groups 97 weight(decay=0.0), 104 weight(decay=0.0005), 103 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to runs\detect\train2
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/100         0G      3.357      4.049      4.284          3        640: 100%|██████████| 45/45 [09:02<00:00, 12.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:18<0all         23         69   0.000719       0.05   0.000601   0.000109Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/100         0G      3.227      4.365       3.91         12        640: 100%|██████████| 45/45 [08:47<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:18<0all         23         69    0.00143     0.0375   0.000824    0.00016Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/100         0G      3.119        3.5      3.704          7        640: 100%|██████████| 45/45 [08:43<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:20<0all         23         69    0.00722      0.396     0.0122    0.00459Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/100         0G      2.987       3.13      3.536         12        640: 100%|██████████| 45/45 [09:13<00:00, 12.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:21<0all         23         69    0.00935      0.109    0.00365   0.000727Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/100         0G      2.801      3.069      3.395          2        640: 100%|██████████| 45/45 [08:53<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:21<0all         23         69    0.00362      0.319    0.00282   0.000871Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/100         0G      2.766      2.914      3.268         12        640: 100%|██████████| 45/45 [08:52<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:19<0all         23         69      0.503      0.365    0.00374    0.00163Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/100         0G      2.605      2.568      3.175         12        640: 100%|██████████| 45/45 [08:54<00:00, 11.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:19<0all         23         69      0.565      0.327      0.122     0.0509Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/100         0G      2.581      2.298      3.141         10        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.532      0.429       0.48      0.213Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/100         0G      2.444      2.123      3.049          3        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.55      0.768      0.699      0.329Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/100         0G       2.34      2.029      2.918          3        640: 100%|██████████| 45/45 [03:30<00:00,  4.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.857      0.478       0.75      0.294Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size11/100         0G      2.303      1.961      2.841         12        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.739      0.561      0.831      0.352Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size12/100         0G      2.301      1.988      2.786          5        640: 100%|██████████| 45/45 [02:41<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.779      0.508      0.761      0.367Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size13/100         0G      2.286      1.873      2.751          4        640: 100%|██████████| 45/45 [02:47<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69       0.81      0.768      0.924      0.496Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size14/100         0G      2.281      1.782      2.702          3        640: 100%|██████████| 45/45 [02:40<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.735       0.81      0.906      0.432Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size15/100         0G      2.171      1.689      2.609          5        640: 100%|██████████| 45/45 [02:42<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.754      0.922      0.918      0.511Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size16/100         0G      2.198      1.684      2.616          5        640: 100%|██████████| 45/45 [02:43<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.864      0.668      0.846      0.481Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size17/100         0G      2.157      1.609      2.566         11        640: 100%|██████████| 45/45 [02:42<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.777       0.91       0.93      0.484Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size18/100         0G      2.109      1.533      2.518          5        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.851      0.876      0.973      0.532Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size19/100         0G       1.95      1.426        2.4          5        640: 100%|██████████| 45/45 [02:46<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.953      0.947      0.979      0.569Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size20/100         0G      1.985      1.427      2.459          3        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.946       0.95      0.983      0.603Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size21/100         0G      1.967      1.424      2.393          4        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.926      0.959      0.975      0.586Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size22/100         0G      1.945       1.43      2.378          4        640: 100%|██████████| 45/45 [02:46<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.868       0.95      0.972      0.528Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size23/100         0G      1.909      1.325      2.316          9        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.732      0.833      0.733      0.446Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size24/100         0G      1.952      1.385      2.383          8        640: 100%|██████████| 45/45 [02:49<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.871       0.99      0.987        0.6Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size25/100         0G       1.82      1.329      2.279          4        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.967      0.975      0.991      0.551Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size26/100         0G      1.843      1.321      2.254          6        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.945      0.963      0.974      0.621Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size27/100         0G      1.723      1.285      2.181          3        640: 100%|██████████| 45/45 [02:40<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.937       0.93      0.976      0.633Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size28/100         0G      1.737      1.251      2.179         11        640: 100%|██████████| 45/45 [02:42<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.818      0.912      0.982      0.625Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size29/100         0G      1.685      1.253      2.149         12        640: 100%|██████████| 45/45 [02:39<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.907       0.95      0.962      0.662Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size30/100         0G      1.633      1.148      2.095          3        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.92      0.988       0.99      0.672Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size31/100         0G      1.625      1.167       2.05          6        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.923      0.984      0.966      0.625Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size32/100         0G      1.618      1.195      2.096          3        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.838      0.993      0.969      0.676Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size33/100         0G      1.679      1.207      2.118          5        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.991       0.75      0.977      0.662Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size34/100         0G      1.521      1.172      2.013          6        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.953          1      0.988      0.695Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size35/100         0G      1.484      1.047       1.95         10        640: 100%|██████████| 45/45 [02:38<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.968      0.981       0.99      0.702Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size36/100         0G      1.507        1.1      1.988         11        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.92      0.948      0.983      0.709Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size37/100         0G      1.514      1.123      1.951          5        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.914      0.938      0.975      0.677Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size38/100         0G      1.497      1.079      1.974          4        640: 100%|██████████| 45/45 [02:37<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.877      0.993      0.977       0.69Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size39/100         0G      1.467      1.046      1.931          5        640: 100%|██████████| 45/45 [02:36<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.908      0.971      0.952      0.664Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size40/100         0G      1.442      1.052      1.913          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.973      0.979      0.991      0.712Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size41/100         0G      1.432      1.035       1.93          7        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.952      0.945      0.993      0.729Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size42/100         0G      1.352     0.9914      1.854          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.956      0.998       0.99      0.735Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size43/100         0G      1.361     0.9737      1.854          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.942      0.976      0.988      0.719Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size44/100         0G       1.35      1.028      1.874          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.941      0.967      0.993      0.736Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size45/100         0G      1.318     0.9836      1.853          2        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.81          1      0.976      0.727Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size46/100         0G      1.321      0.972      1.833          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.862      0.991      0.969      0.718Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size47/100         0G      1.322     0.9708      1.828          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.928          1       0.99      0.767Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size48/100         0G       1.35     0.9472      1.809          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.97      0.975      0.993      0.774Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size49/100         0G      1.316     0.9418      1.778          2        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.959      0.988      0.992      0.759Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size50/100         0G      1.296     0.9306      1.794          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.964      0.975      0.992      0.766Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size51/100         0G      1.289     0.9222      1.748         11        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.972          1      0.994      0.746Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size52/100         0G      1.301     0.9169      1.757          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.974          1      0.991      0.777Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size53/100         0G        1.3     0.9216      1.784          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.984          1      0.995      0.763Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size54/100         0G      1.243     0.9061      1.744          9        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.972          1      0.995      0.747Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size55/100         0G      1.248     0.9066      1.755          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.927      0.968      0.991      0.759Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size56/100         0G      1.184     0.8523      1.699          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.966      0.988      0.994      0.789Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size57/100         0G       1.21     0.8508      1.678          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.946      0.997      0.988      0.756Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size58/100         0G       1.23     0.8597      1.706          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.896      0.973      0.988      0.763Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size59/100         0G       1.22     0.8403      1.682          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.927          1      0.994      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size60/100         0G       1.22     0.8524      1.684          1        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.981      0.995      0.995      0.788Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size61/100         0G      1.192     0.8089      1.639          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982          1      0.995      0.807Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size62/100         0G      1.131     0.7906      1.644          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.924      0.972      0.993      0.771Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size63/100         0G      1.104     0.8165      1.632         12        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.98      0.995      0.995      0.794Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size64/100         0G      1.115      0.787       1.59          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.964      0.986      0.994      0.794Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size65/100         0G      1.137     0.8069      1.592          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.976          1      0.995      0.817Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size66/100         0G        1.1     0.7912      1.622         11        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.925      0.981      0.995      0.795Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size67/100         0G      1.147     0.7932      1.616          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.983          1      0.995      0.815Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size68/100         0G      1.041      0.737      1.543          8        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.952      0.984      0.994      0.792Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size69/100         0G       1.12      0.794      1.594          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.917      0.988      0.994      0.796Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size70/100         0G      1.075     0.7553      1.556         10        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982       0.99      0.995      0.823Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size71/100         0G      1.097      0.766      1.601          2        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.987          1      0.995      0.821Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size72/100         0G      1.086     0.7548      1.564          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982          1      0.995      0.846Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size73/100         0G      1.059     0.7505      1.536          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.812Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size74/100         0G      1.055     0.7771      1.559          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.984      0.999      0.995      0.822Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size75/100         0G      1.037     0.7189      1.547          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.978      0.997      0.995      0.821Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size76/100         0G      1.072     0.7336      1.542          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.994      0.993      0.995      0.819Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size77/100         0G       1.04     0.7151      1.522          9        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.987      0.977      0.995      0.823Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size78/100         0G      1.002     0.6845      1.496          7        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.985          1      0.995      0.832Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size79/100         0G     0.9976     0.7083      1.511          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.974          1      0.994      0.817Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size80/100         0G      1.024     0.6866      1.471          3        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.961      0.997      0.995      0.827Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size81/100         0G      1.003      0.708      1.517          8        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.98      0.987      0.995      0.822Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size82/100         0G      1.005     0.6982      1.483          9        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.982          1      0.995      0.839Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size83/100         0G      1.011     0.6994      1.488          5        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.979      0.997      0.995       0.84Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size84/100         0G      1.003     0.6665      1.473          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.979       0.99      0.995      0.829Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size85/100         0G      1.028     0.7083      1.524          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.845Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size86/100         0G     0.9896     0.6647      1.497          4        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.841Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size87/100         0G     0.9701     0.6515      1.461          7        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.99          1      0.995      0.848Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size88/100         0G      0.977     0.6523      1.443         12        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.991          1      0.995      0.847Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size89/100         0G     0.9417     0.6477      1.455          6        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988      0.998      0.995      0.832Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size90/100         0G     0.9462     0.6527      1.432          7        640: 100%|██████████| 45/45 [02:35<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69       0.99          1      0.995      0.855
Closing dataloader mosaicEpoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size91/100         0G     0.8118     0.5889      1.335          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.975          1      0.995       0.85Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size92/100         0G      0.785     0.5849       1.29          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.932      0.993      0.995      0.836Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size93/100         0G      0.782     0.5619      1.257          3        640: 100%|██████████| 45/45 [161:44:16<00:00,Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.983       0.99      0.995      0.856Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size94/100         0G     0.7927     0.5596      1.321          3        640: 100%|██████████| 45/45 [03:07<00:00,  4.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.986          1      0.995      0.847Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size95/100         0G     0.7747      0.566      1.286          3        640: 100%|██████████| 45/45 [02:58<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.988          1      0.995      0.856Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size96/100         0G     0.7517     0.5521      1.297          3        640: 100%|██████████| 45/45 [02:51<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.989          1      0.995      0.852Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size97/100         0G     0.7576     0.5551      1.271          3        640: 100%|██████████| 45/45 [02:45<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.989          1      0.995      0.857Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size98/100         0G     0.7792     0.5597      1.302          3        640: 100%|██████████| 45/45 [02:53<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:06<0all         23         69      0.988          1      0.995       0.86Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size99/100         0G     0.7342     0.5362      1.279          3        640: 100%|██████████| 45/45 [02:34<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.989          1      0.995      0.859Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size100/100         0G     0.7403     0.5395      1.291          3        640: 100%|██████████| 45/45 [02:31<00:00,  3.Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:05<0all         23         69      0.988          1      0.995      0.867

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/208178.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/208178.shtml
英文地址,請注明出處:http://en.pswp.cn/news/208178.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

LeetCode雙指針:有序數組中的單一元素

LeetCode雙指針&#xff1a;有序數組中的單一元素 題目描述 給你一個僅由整數組成的有序數組&#xff0c;其中每個元素都會出現兩次&#xff0c;唯有一個數只會出現一次。 請你找出并返回只出現一次的那個數。 你設計的解決方案必須滿足 O(log n) 時間復雜度和 O(1) 空間復…

關于什么是 JVM

關于什么是 JVM&#xff0c;看看普通?和??的回答。 普通人 JVM 就是 Java 虛擬機&#xff0c;是?來運?我們平時所寫的 Java 代碼的。優點是它會 ?動進?內存管理和垃圾回收&#xff0c;缺點是?旦發?問題&#xff0c;要是不了解 JVM 的運? 機制&#xff0c; 就很難…

是誰還沒玩AI擴圖?快跟上節奏啦

最近&#xff0c;抖音上的AI擴圖突然火了&#xff0c;看完真的讓人笑掉大牙&#xff5e;&#xff5e;&#xff5e; 這一熱議的話題#AI擴圖#在短視頻平臺抖音上的播放量已經突破7.8億次&#xff0c;而相關的討論也如同星火燎原&#xff0c;迅速點燃了公眾的好奇心。從“用AI擴圖…

中偉視界:皮帶跑偏、異物檢測AI算法除了礦山行業應用,還能在鋼鐵、火電、港口等行業中使用嗎?

隨著工業化的發展&#xff0c;皮帶輸送機已經成為各行業中不可或缺的重要設備&#xff0c;但是在使用過程中&#xff0c;由于各種原因&#xff0c;皮帶常常出現跑偏問題&#xff0c;給生產運營帶來了諸多困擾。不僅僅是礦山行業&#xff0c;鋼鐵、火電、港口等行業也都面臨著皮…

C語言 掃雷游戲

代碼在一個項目里完成&#xff0c;分成三個.c.h文件(game.c,game.h,main.c) 在Clion軟件中通過運行調試。 /大概想法/ 主函數main.c里是大框架(菜單,掃雷棋盤初始化&#xff0c;隨機函數生成雷&#xff0c;玩家掃雷) game.h函數聲明(除main函數和游戲函數外的一些函數聲明) ga…

RepidJson將內容寫入文件

使用 RapidJSON 將內容寫入文件的步驟如下&#xff1a; 創建一個 rapidjson::Document 對象&#xff0c;將需要寫入文件的內容存儲到其中。創建一個 rapidjson::StringBuffer 對象來保存 JSON 字符串。將 rapidjson::Document 對象轉換為 JSON 字符串&#xff0c;并將其放入 r…

日志打印傳值 傳引用 右值引用性能測試

結論 ubuntu x86平臺qnx平臺優化傳值都是比傳引用的差 但是差距很小 測試代碼 #include <cstdint> #include <ctime> #include <string>#ifdef __linux__#define ITERATIONS 10000000 #else#define ITERATIONS 100000 #endiftemplate <typename... AR…

rust高級 異步編程 一 future

文章目錄 Async 編程簡介async/.await 簡單入門 Future 執行器與任務調度Future 特征使用 Waker 來喚醒任務構建一個定時器執行器 Executor構建執行器 完整代碼 Async 編程簡介 OS 線程, 它最簡單&#xff0c;也無需改變任何編程模型(業務/代碼邏輯)&#xff0c;因此非常適合作…

Linux設置root初始密碼

目錄 一、Linux系統中普通用戶和特權用戶&#xff08;root&#xff09; 二、Linux系統中設置root初始密碼 一、Linux系統中普通用戶和特權用戶&#xff08;root&#xff09; windows 系統中有普通用戶和特權用戶&#xff0c;特權用戶是 administer&#xff0c;普通用戶可以…

mybatisplus調用oracle存儲過程

mybatisplus調用oracle存儲過程 創建一個測試的oracle存儲過程 -- 創建攜帶返回值存儲過程 CREATE OR REPLACE PROCEDURE SP_SUM_PROC_2023(number1 IN NUMBER, number2 IN NUMBER, result OUT NUMBER,result2 OUT NUMBER) is BEGIN result : number1 number2; result2 : 99…

微服務01

筆記&#xff1a; day03-微服務01 - 飛書云文檔 (feishu.cn) 數據庫連接不上&#xff1f; 要在虛擬機啟動MySQL容器。docker start mysql 服務治理 服務提供者&#xff1a;暴露服務接口&#xff0c;供其他服務調用 服務消費者&#xff1a;調用其他服務提供的接口 注冊中心&…

Java IO流(一) 基本知識

Java IO流 一、基礎知識 IO流即存儲和讀取數據的解決方案。 &#xff08;一&#xff09;File 表示系統中的文件或者文件夾的路徑 獲取文件信息(大小&#xff0c;文件名&#xff0c;修改時間) 創建文件/文件夾 刪除文件/文件夾 判斷文件的類型 注意&#xff1a;File類只能對…

STL(五)(queue篇)

我發現之前一版在電腦上看 常用函數部分 沒有問題,由于是手打上去的,在手機上看會發生錯位問題,現已將電腦原版 常用函數部分 截圖改為圖片形式,不會再發生錯位問題,非常感謝大家的支持 ### priority_queue優先隊列出現頻率非常高,尤為重要(是一定要掌握的數據結構) 1.queue隊…

A : DS靜態查找之順序查找

Description 給出一個隊列和要查找的數值&#xff0c;找出數值在隊列中的位置&#xff0c;隊列位置從1開始 要求使用帶哨兵的順序查找算法 Input 第一行輸入n&#xff0c;表示隊列有n個數據 第二行輸入n個數據&#xff0c;都是正整數&#xff0c;用空格隔開 第三行輸入t&…

Spring-retry失敗重試機制

提示&#xff1a;文章寫完后&#xff0c;目錄可以自動生成&#xff0c;如何生成可參考右邊的幫助文檔 文章目錄 前言一、引入依賴二、主啟動類上加EnableRetry三、Server層注意 四、失敗后回調方法總結 前言 提示&#xff1a;SpringBoot項目為例 原文鏈接&#xff1a;https://…

docker全解

docker全解 一、docker的基本概念 什么是docker? docker是一個開源的應用容器引擎&#xff0c;讓開發者可以打包他們的應用以及依賴包到一個可移植的鏡像中&#xff0c;然后發布到任何流行的Linux或Windows機器上&#xff0c;也可以實現虛擬化。容器是完全使用沙箱機制&#…

MIT線性代數筆記-第26講-對稱矩陣及正定性

目錄 26.對稱矩陣及正定性打賞 26.對稱矩陣及正定性 實對稱矩陣的特征值均為實數&#xff0c;并且一定存在一組兩兩正交的特征向量 這對于單位矩陣顯然成立 證明特征值均為實數&#xff1a; ? ???設一個對稱矩陣 A A A&#xff0c;對于 A x ? λ x ? A \vec{x} \lambda…

作業12.8

1. 使用手動連接&#xff0c;將登錄框中的取消按鈕使用qt4版本的連接到自定義的槽函數中&#xff0c;在自定義的槽函數中調用關閉函數。將登錄按鈕使用qt5版本的連接到自定義的槽函數中&#xff0c;在槽函數中判斷ui界面上輸入的賬號是否為"admin"&#xff0c;密碼是…

Matlab simulink PLL學習筆記

本文學習內容&#xff1a;【官方】2022小邁步之 MATLAB助力芯片設計系列&#xff08;一&#xff09;&#xff1a;電路仿真與模數混合設計基礎_嗶哩嗶哩_bilibili 時域模型 testbench搭建 菜單欄點擊simulink 創建空白模型 點擊庫瀏覽器 在PLL里面選擇一種架構拖拽到畫布。 如…

一文理解什么是交叉熵損失函數以及它的作用

今天看一個在深度學習中很枯燥但很重要的概念——交叉熵損失函數。 作為一種損失函數&#xff0c;它的重要作用便是可以將“預測值”和“真實值(標簽)”進行對比&#xff0c;從而輸出 loss 值&#xff0c;直到 loss 值收斂&#xff0c;可以認為神經網絡模型訓練完成。 那么這…