Description
給定 01 01 01 序列 a = ( a 1 , a 2 , ? , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1?,a2?,?,an?),并定義 f ( l , r ) = [ ( ∑ i = l r a i ) = r ? l + 1 ] f(l,r)=[(\sum\limits_{i=l}^r a_i)=r-l+1] f(l,r)=[(i=l∑r?ai?)=r?l+1].
執行 m m m 個操作,分五種:
- reset ? ( l , r ) \operatorname{reset}(l,r) reset(l,r):對每個 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 執行 a i ← 0 a_i\gets 0 ai?←0.
- set ? ( l , r ) \operatorname{set}(l,r) set(l,r):對每個 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 執行 a i ← 1 a_i\gets 1 ai?←1.
- negate ? ( l , r ) \operatorname{negate}(l,r) negate(l,r):對每個 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 執行 a i ← 1 ? a i a_i\gets 1-a_i ai?←1?ai?.
- sum ? ( l , r ) \operatorname{sum}(l,r) sum(l,r):求 ∑ i = l r a i \sum\limits_{i=l}^r a_i i=l∑r?ai?.
- gss ? ( l , r ) \operatorname{gss}(l,r) gss(l,r):求 max ? [ s , t ] ∈ [ l , r ] ( t ? s + 1 ) × f ( s , t ) \max\limits_{[s,t]\in[l,r]}(t-s+1)\times f(s,t) [s,t]∈[l,r]max?(t?s+1)×f(s,t).
Limitations
1 ≤ n , m ≤ 1 0 5 1\le n,m\le 10^5 1≤n,m≤105
1 ≤ l ≤ r ≤ n 1\le l\le r\le n 1≤l≤r≤n
1 s , 128 MB 1\text{s},128\text{MB} 1s,128MB
Solution
線段樹做法.
節點上維護 S = ( sum , lsum , rsum , tsum , len ) S=(\textit{sum},\textit{lsum},\textit{rsum},\textit{tsum},\textit{len}) S=(sum,lsum,rsum,tsum,len),用類似最大子段和的方法更新.
由于要取反, 0 0 0 和 1 1 1 都分別需要一個 S S S(下記為 S 0 S_0 S0? 和 S 1 S_1 S1?) .
然后需要標記 T T T,顯然 T = ( cov , rev ) T=(\textit{cov},\textit{rev}) T=(cov,rev)(分別為賦值和取反標記)
- 考慮賦值,我們直接將 S c o v S_{cov} Scov? 全部填上 len \textit{len} len, S 1 ? c o v S_{1-cov} S1?cov? 全部清零( len \textit{len} len 要不變)
- 考慮翻轉,我們直接交換 S 0 S_0 S0? 和 S 1 S_1 S1?.
然后需要考慮 T + T T+T T+T:
- 賦值可以直接打標記.
- 對于取反,當一個區間賦值后,取反就相當于賦值 ( 1 ? cov ) (1-\textit{cov}) (1?cov),那么我們可以將 cov \textit{cov} cov 取反(此時 rev \textit{rev} rev 沒用,要置為 0 0 0),否則,直接更新 rev \textit{rev} rev.
有不少坑點:
- 下標從 0 0 0 開始.
- 沒有被賦值的節點, cov \textit{cov} cov 要置為 ? 1 -1 ?1 表示沒有賦值.
- 更新 S S S 時,左半區間滿了, lsum \textit{lsum} lsum 才能跨越中點, rsum \textit{rsum} rsum 同理.
- 先處理 cov \textit{cov} cov 再處理 rev \textit{rev} rev.
- 打 rev \textit{rev} rev 標記時
^= 1
不要寫成= 1
.
Code
3.9 KB , 0.45 s , 11.63 MB (in total, C++20 with O2) 3.9\text{KB},0.45\text{s},11.63\text{MB}\;\texttt{(in total, C++20 with O2)} 3.9KB,0.45s,11.63MB(in?total,?C++20?with?O2)
建議封裝 S S S(見代碼中的 Data
),會好寫不少.
#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}namespace seg_tree {struct Data {int sum, lsum, rsum, tsum, len;inline Data() {}inline Data(int x) : sum(x), lsum(x), rsum(x), tsum(x), len(1) {}inline Data(int _sum, int _lsum, int _rsum, int _tsum, int _len): sum(_sum), lsum(_lsum), rsum(_rsum), tsum(_tsum), len(_len) {}};inline Data operator+(const Data& lhs, const Data& rhs) {const int _sum = lhs.sum + rhs.sum;const int _lsum = lhs.lsum + (lhs.sum == lhs.len) * rhs.lsum;const int _rsum = rhs.rsum + (rhs.sum == rhs.len) * lhs.rsum;const int _tsum = std::max({lhs.tsum, rhs.tsum, lhs.rsum + rhs.lsum});const int _len = lhs.len + rhs.len;return Data(_sum, _lsum, _rsum, _tsum, _len);}struct Node {int l, r;array<Data, 2> dat;int cov, rev;inline Data& operator[](int i) { return dat[i]; }inline Data operator[](int i) const { return dat[i]; }};inline int ls(int u) { return 2 * u + 1; }inline int rs(int u) { return 2 * u + 2; }struct SegTree {vector<Node> tr;inline SegTree() {}inline SegTree(const vector<int>& a) {const int n = a.size();tr.resize(n << 1);build(0, 0, n - 1, a);}inline void pushup(int u, int mid) {for (int i = 0; i < 2; i++) tr[u][i] = tr[ls(mid)][i] + tr[rs(mid)][i];}inline void apply(int u, int cov, int rev) {if (~cov) {const int len = tr[u][cov].len;tr[u][cov] = Data(len, len, len, len, len);tr[u][cov ^ 1] = Data(0, 0, 0, 0, len);tr[u].cov = cov;tr[u].rev = 0;return;}if (rev) {swap(tr[u][0], tr[u][1]);if (~tr[u].cov) tr[u].cov ^= 1;else tr[u].rev ^= 1;}}inline void pushdown(int u, int mid) {apply(ls(mid), tr[u].cov, tr[u].rev);apply(rs(mid), tr[u].cov, tr[u].rev);tr[u].cov = -1, tr[u].rev = 0;}void build(int u, int l, int r, const vector<int>& a) {tr[u].l = l, tr[u].r = r, tr[u].cov = -1;if (l == r) {for (int i = 0; i < 2; i++) tr[u][i] = Data(a[l] == i);return;}const int mid = (l + r) >> 1;build(ls(mid), l, mid, a);build(rs(mid), mid + 1, r, a);pushup(u, mid);}void update(int u, int l, int r, int cov, int rev) {if (l <= tr[u].l && tr[u].r <= r) return apply(u, cov, rev);const int mid = (tr[u].l + tr[u].r) >> 1;pushdown(u, mid);if (l <= mid) update(ls(mid), l, r, cov, rev);if (r > mid) update(rs(mid), l, r, cov, rev);pushup(u, mid);}Data query(int u, int l, int r) {if (l <= tr[u].l && tr[u].r <= r) return tr[u][1];const int mid = (tr[u].l + tr[u].r) >> 1;pushdown(u, mid);if (r <= mid) return query(ls(mid), l, r);else if (l > mid) return query(rs(mid), l, r);else return query(ls(mid), l, r) + query(rs(mid), l, r);}inline void range_cover(int l, int r, int v) { update(0, l, r, v, 0); }inline void range_negate(int l, int r) { update(0, l, r, -1, 1); }inline int range_sum(int l, int r) { return query(0, l, r).sum; }inline int range_gss(int l, int r) { return query(0, l, r).tsum; }};
}
using seg_tree::SegTree;signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, m;scanf("%d %d", &n, &m);vector<int> a(n);for (int i = 0; i < n; i++) scanf("%d", &a[i]);SegTree sgt(a);for (int i = 0, op, l, r; i < m; i++) {scanf("%d %d %d", &op, &l, &r);if (op == 0) sgt.range_cover(l, r, 0);if (op == 1) sgt.range_cover(l, r, 1);if (op == 2) sgt.range_negate(l, r);if (op == 3) printf("%d\n", sgt.range_sum(l, r));if (op == 4) printf("%d\n", sgt.range_gss(l, r));}return 0;
}