linux搭建hadoop學習
下載安裝包:
海外資源可能需要翻墻或者找國內資源
cd /opt
wget https://dlcdn.apache.org/hadoop/common/hadoop-2.10.2/hadoop-2.10.2.tar.gz
tar -zxvf hadoop-2.10.2.tar.gz
mv hadoop-2.10.2 hadoop
配置環境變量
# 在/etc/profile文件中添加下面內容
export HADOOP_HOME=/opt/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
#生效環境變量
source /etc/profile
測試安裝,在命令行中執行
hadoop version
我這里執行后報錯,很明顯前面提到過hadoop由java開發,所以還需要配置java環境.
[root@win-local-17 ~]# hadoop version
Error: JAVA_HOME is not set and could not be found.
這里可以參考文檔: https://blog.csdn.net/qq_42402854/article/details/108164936
如果是原本使用rpm包安裝jdk需要注意下,可能你主機上可以執行java命令,但是依然會遇到這個報錯.
這時需要我們在手動配置下環境變量:
# 看下java是在哪個目錄下,然后配置到/etc/profile文件中
which javaexport JAVA_HOME=/usr/
export PATH=$PATH:$JAVA_HOME/bin
然后再執行:
[root@win-local-17 ~]# hadoop version
Hadoop 2.10.2
Subversion Unknown -r 965fd380006fa78b2315668fbc7eb432e1d8200f
Compiled by ubuntu on 2022-05-24T22:35Z
Compiled with protoc 2.5.0
From source with checksum d3ab737f7788f05d467784f0a86573fe
This command was run using /opt/hadoop/share/hadoop/common/hadoop-common-2.10.2.jar
到這里hadoop的應用程序安裝完成了,
接下來我們開始部署單機模型和偽分布式服務.因為是學習階段所以使用單臺主機部署偽分布式就可以了.如果需要多臺主機部署分布式可以查看文末的參考文檔.
單機模式
先進行一個簡單的示例:用來統計分析單詞的個數和數量
#首先創建一個目錄
cd /opt/hadoop
mkdir input
cd ./intput
然后創建文件,寫入一些簡單數據
cat test
hadoop yarn
hadoop mapreduce
spark
spark
然后執行一下MapReduce 程序,我們來看下效果:
hadoop jar /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.10.2.jar wordcount input/ wcoutput
程序執行之后會看到有很多輸出,此時主機cpu使用率也會升高,主要看有沒有明顯的報錯出現.,執行執行完成之后,在/opt/hadoop下會創建出一個目錄: wcoutput
可以看到這里將我們給的測試內容中的單詞數量統計出來了.
[root@win-local-17 hadoop]# ll wcoutput
總用量 4
-rw-r--r--. 1 root root 36 5月 8 18:05 part-r-00000
-rw-r--r--. 1 root root 0 5月 8 18:05 _SUCCESS
[root@win-local-17 hadoop]# cat wcoutput/part-r-00000
hadoop 2
mapreduce 1
spark 2
yarn 1
[root@win-local-17 hadoop]# pwd
/opt/hadoop
接下來,我們進行一個nginx日志的統計,上面的測試發現它可以統計簡單的單詞,那么就可以對指定的日志格式內容進行分析,比如我們讓他統計一下nginx日志文件中,請求的客戶端IP的數量和狀態碼的數量.
當然我們不能直接和上面一樣運行命令直接進行統計,hadoop還不能直接實現,需要我們對MapReduce 過程進行自定義,分為map過程和Reduce過程;Hadoop Streaming 允許使用任何可執行程序(如 Python 腳本)作為 MapReduce 作業的 mapper 和 reducer。
這里我們自己寫兩個Python腳本,來實現map過程和Reduce過程.
mapper.py
import sys
import re# 正則表達式用于解析 Nginx 日志行
NGINX_LOG_PATTERN = re.compile(r'^([\d.]+) - - \[(.*?)\] "(.*?)" (\d+) (\d+)')for line in sys.stdin:line = line.strip()match = NGINX_LOG_PATTERN.match(line)if match:# 提取 IP 地址ip = match.group(1)# 提取狀態碼status_code = match.group(4)# 輸出 IP 地址和計數print(f"{ip}\t1")# 輸出狀態碼和計數print(f"{status_code}\t1")
reducer.py
import syscurrent_key = None
current_count = 0for line in sys.stdin:line = line.strip()key, count = line.split('\t', 1)try:count = int(count)except ValueError:continueif current_key == key:current_count += countelse:if current_key:print(f"{current_key}\t{current_count}")current_key = keycurrent_count = countif current_key:print(f"{current_key}\t{current_count}")
這里通過mapper.py對輸入的日志內容進行過濾,提取IP和狀態碼,輸入一個鍵值對。而reducer.py就是對map中輸出的鍵值對,對相同鍵值進行累計,得到次數。
然后我們在創建目錄和日志文件內容:
mkdir nginx-input
cd nginx-input
[root@win-local-17 nginx-input]# ll
總用量 36
-rw-r--r--. 1 root root 502 5月 8 18:34 mapper.py
-rw-r--r--. 1 root root 26326 5月 8 18:48 nginx.log
-rw-r--r--. 1 root root 474 5月 8 18:35 reducer.py
[root@win-local-17 nginx-input]# head nginx.log -n 3
192.168.112.125 - - [03/Apr/2025:20:25:15 +0800] "HEAD /app/psychicai/psychicai_test.ipa HTTP/2.0" 200 0 "-" "com.apple.appstored/1.0 iOS/17.5.1 model/iPhone13,2 hwp/t8101 build/21F90 (6; dt:229) AMS/1" "-"
192.168.112.125 - - [03/Apr/2025:20:25:15 +0800] "GET /app/psychicai/icon_1024@1x.png HTTP/2.0" 200 162747 "-" "com.apple.appstored/1.0 iOS/17.5.1 model/iPhone13,2 hwp/t8101 build/21F90 (6; dt:229) AMS/1" "-"
192.168.112.125 - - [03/Apr/2025:20:25:21 +0800] "GET /app/psychicai/psychicai_test.ipa HTTP/2.0" 200 74397692 "-" "com.apple.appstored/1.0 iOS/17.5.1 model/iPhone13,2 hwp/t8101 build/21F90 (6; dt:229) AMS/1" "-"
文件內容準備好之后,我們執行命令用自定義的腳本去執行兩個階段:(主機需要有Python3的環境)
cd /opt/hadoop/nginx-inputhadoop jar ../share/hadoop/tools/lib/hadoop-streaming-*.jar \
-input ./nginx.log \
-output /output \
-mapper "python3 mapper.py" \
-reducer "python3 reducer.py"
執行期間我們會看到有很對輸出,觀察里面是否有明顯報錯.
[root@win-local-17 nginx-input]# hadoop jar ../share/hadoop/tools/lib/hadoop-streaming-*.jar \
> -input ./nginx.log \
> -output /output \
> -mapper "python3 mapper.py" \
> -reducer "python3 reducer.py"
25/05/08 18:50:59 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
25/05/08 18:50:59 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
25/05/08 18:51:19 INFO jvm.JvmMetrics: Cannot initialize JVM Metrics with processName=JobTracker, sessionId= - already initialized
25/05/08 18:51:40 INFO mapred.FileInputFormat: Total input files to process : 1
25/05/08 18:51:40 INFO mapreduce.JobSubmitter: number of splits:1
25/05/08 18:51:41 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1405416554_0001
25/05/08 18:51:41 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
25/05/08 18:51:41 INFO mapred.LocalJobRunner: OutputCommitter set in config null
25/05/08 18:51:41 INFO mapreduce.Job: Running job: job_local1405416554_0001
25/05/08 18:51:41 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapred.FileOutputCommitter
25/05/08 18:51:41 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
25/05/08 18:51:41 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
25/05/08 18:51:41 INFO mapred.LocalJobRunner: Waiting for map tasks
25/05/08 18:51:41 INFO mapred.LocalJobRunner: Starting task: attempt_local1405416554_0001_m_000000_0
25/05/08 18:51:42 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
25/05/08 18:51:42 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
25/05/08 18:51:42 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]
25/05/08 18:51:42 INFO mapred.MapTask: Processing split: file:/opt/hadoop/nginx-input/nginx.log:0+26326
25/05/08 18:51:42 INFO mapred.MapTask: numReduceTasks: 1
25/05/08 18:51:42 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
25/05/08 18:51:42 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
25/05/08 18:51:42 INFO mapred.MapTask: soft limit at 83886080
25/05/08 18:51:42 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
25/05/08 18:51:42 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
25/05/08 18:51:42 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
25/05/08 18:51:42 INFO streaming.PipeMapRed: PipeMapRed exec [/usr/local/bin/python3, mapper.py]
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.work.output.dir is deprecated. Instead, use mapreduce.task.output.dir
25/05/08 18:51:42 INFO Configuration.deprecation: map.input.start is deprecated. Instead, use mapreduce.map.input.start
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.local.dir is deprecated. Instead, use mapreduce.cluster.local.dir
25/05/08 18:51:42 INFO Configuration.deprecation: map.input.file is deprecated. Instead, use mapreduce.map.input.file
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
25/05/08 18:51:42 INFO Configuration.deprecation: map.input.length is deprecated. Instead, use mapreduce.map.input.length
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
25/05/08 18:51:42 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
25/05/08 18:51:42 INFO Configuration.deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
25/05/08 18:51:42 INFO streaming.PipeMapRed: R/W/S=1/0/0 in:NA [rec/s] out:NA [rec/s]
25/05/08 18:51:42 INFO streaming.PipeMapRed: R/W/S=10/0/0 in:NA [rec/s] out:NA [rec/s]
25/05/08 18:51:42 INFO streaming.PipeMapRed: R/W/S=100/0/0 in:NA [rec/s] out:NA [rec/s]
25/05/08 18:51:42 INFO streaming.PipeMapRed: Records R/W=100/1
25/05/08 18:51:42 INFO streaming.PipeMapRed: MRErrorThread done
25/05/08 18:51:42 INFO streaming.PipeMapRed: mapRedFinished
.......
在這期間也可以觀察到主機cpu和負載會有很明顯的升高,
top - 18:51:42 up 2 days, 8:32, 3 users, load average: 0.16, 0.05, 0.06
Tasks: 154 total, 1 running, 153 sleeping, 0 stopped, 0 zombie
%Cpu(s): 12.5 us, 2.8 sy, 0.0 ni, 84.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 1867048 total, 211396 free, 249168 used, 1406484 buff/cache
KiB Swap: 1048572 total, 1048404 free, 168 used. 1304388 avail MemPID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND25764 root 20 0 2304916 138548 22392 S 155.5 7.4 0:12.16 java
我這里測試了100條日志數據執行10s左右就結束了,然后我們可以看到執行結果.
[root@win-local-17 nginx-input]# ll /output/
總用量 4
-rw-r--r--. 1 root root 107 5月 8 18:51 part-00000
-rw-r--r--. 1 root root 0 5月 8 18:51 _SUCCESS
[root@win-local-17 nginx-input]# cat /output/part-00000
192.168.112.125 3
192.168.113.187 5
192.168.114.57 1
192.168.115.0 3
192.168.89.136 88
200 53
206 2
405 45
這里他將日志中的客戶端IP,以及狀態碼都統計出來, 我們在用命令去過濾一下,對比一下統計結果
[root@win-local-17 nginx-input]# cat nginx.log | awk '{print $1}' |sort -n | uniq -c3 192.168.112.1255 192.168.113.1871 192.168.114.573 192.168.115.088 192.168.89.136
[root@win-local-17 nginx-input]# cat nginx.log |grep -w '200' |wc -l
53
[root@win-local-17 nginx-input]# cat nginx.log |grep -w '206' |wc -l
2
[root@win-local-17 nginx-input]# cat nginx.log |grep -w '405' |wc -l
45
[root@win-local-17 nginx-input]# wc -l nginx.log
100 nginx.log
通過我們手動對日志文件進行統計可以看到,最終的結果跟上面使用MapReduce的方式一樣,通過這種自定義的方式,可以使用多場景化,當然后面再不斷地學習中還會有更好工具幫助簡化自定義的數據分析方式.
偽分布式模式
偽分布式則是在一臺主機上模擬出分布式的各個進程運行狀態,方便我們了解學習.
配置集群,修改hadoop的配置文件: /opt/hadoop/etc/hadoop/core-site.xml (該配置文件是 Hadoop 集群的核心配置文件之一,主要用于定義 Hadoop 分布式系統的全局設置和通用屬性,控制 Hadoop 各個組件之間的通信、數據傳輸和基本行為。這個文件決定了 Hadoop 集群如何運行以及各個服務之間如何交互。)
core-site.xml
<configuration>
<!-- 指定HDFS中NameNode的地址 -->
<property><name>fs.defaultFS</name><!-- namenode主機地址,本地地址 --><value>hdfs://192.168.44.17:8020</value>
</property><!-- 指定Hadoop運行時產生文件的存儲目錄 -->
<property><name>hadoop.tmp.dir</name><value>/opt/hadoop/data/tmp</value></property>
</configuration>
hdfs-site.xml
<configuration><!-- 指定HDFS副本的數量 --><property><name>dfs.replication</name><value>1</value></property>
</configuration>
修改上面的配置后,啟動集群
- 格式化 NameNode(第一次啟動時格式化,以后就不要總格式化)
hdfs namenode -format
# 執行之后會有很多輸出,檢查是否有明顯異常
25/05/09 11:16:23 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at win-local-17/192.168.44.17
************************************************************/
- 啟動 NameNode
cd /opt/hadoop/etc/hadoop
[root@win-local-17 hadoop]# hadoop-daemon.sh start namenode
starting namenode, logging to /opt/hadoop/logs/hadoop-root-namenode-win-local-17.out
[root@win-local-17 hadoop]# cat /opt/hadoop/logs/hadoop-root-namenode-win-local-17.out
ulimit -a for user root
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 7206
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 7206
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
- 啟動DataNode
cd /opt/hadoop/etc/hadoop
[root@win-local-17 hadoop]# hadoop-daemon.sh start datanode
starting datanode, logging to /opt/hadoop/logs/hadoop-root-datanode-win-local-17.out
[root@win-local-17 hadoop]# cat /opt/hadoop/logs/hadoop-root-datanode-win-local-17.out
ulimit -a for user root
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 7206
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 7206
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
- 查看進程是否啟動成功
[root@win-local-17 hadoop]# jps
80615 NameNode
80726 DataNode
80790 Jps
[root@win-local-17 hadoop]# netstat -anltp |grep java
tcp 0 0 192.168.44.17:8020 0.0.0.0:* LISTEN 80615/java
tcp 0 0 0.0.0.0:50070 0.0.0.0:* LISTEN 80615/java
tcp 0 0 0.0.0.0:50010 0.0.0.0:* LISTEN 80726/java
tcp 0 0 0.0.0.0:50075 0.0.0.0:* LISTEN 80726/java
tcp 0 0 0.0.0.0:50020 0.0.0.0:* LISTEN 80726/java
tcp 0 0 127.0.0.1:43496 0.0.0.0:* LISTEN 80726/java
tcp 0 0 192.168.44.17:37402 192.168.44.17:8020 ESTABLISHED 80726/java
tcp 0 0 192.168.44.17:8020 192.168.44.17:37402 ESTABLISHED 80615/java
簡單介紹上面端口對應的服務:
8020: HDFS 的 NameNode 服務。
50070: NameNode 的 Web UI 服務,可以通過瀏覽器訪問
50010: DataNode 的數據傳輸端口,DataNode 使用該端口與其他 DataNode 節點或客戶端進行數據塊的傳輸。當客戶端需要讀取或寫入數據時,會通過該端口與相應的 DataNode 進行數據交互。
50075: DataNode 的 Web UI 服務。
50020: DataNode 的元數據服務端口。用于 DataNode 與 NameNode 之間進行數據塊的元數據信息交換,例如 DataNode 向 NameNode 匯報自己所存儲的數據塊信息
通過web端訪問一下HDFS的系統:
在這里面可以系統的相關信息以及節點和日志的信息
5. 啟動 YARN 并運行 MapReduce 程序
修改yarn-site.xml配置文件,添加下面內容
/opt/hadoop/etc/hadoop/yarn-site.xml
<configuration><!-- 指定 NodeManager 節點上運行的輔助服務列表。在 Hadoop 中,mapreduce_shuffle 是一個關鍵的輔助服務,專門用于處理 MapReduce 作業中的數據混洗(Shuffle)階段。 --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><!-- 指定YARN的ResourceManager的地址,默認端口是8088--><property><name>yarn.resourcemanager.webapp.address</name><value>0.0.0.0:8088</value></property>
</configuration>
mv mapred-site.xml.template mapred-site.xml
修改mapred-site.xml
<configuration><!-- 指定MR運行在YARN上 --><property><name>mapreduce.framework.name</name><value>yarn</value></property>
</configuration>
- 啟動集群
啟動前必須保證 NameNode 和 DataNode 已經啟動
啟動ResourceManager
[root@win-local-17 hadoop]# yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /opt/hadoop/logs/yarn-root-resourcemanager-win-local-17.out
啟動NodeManager啟動NodeManager
[root@win-local-17 hadoop]# yarn-daemon.sh start nodemanager
starting nodemanager, logging to /opt/hadoop/logs/yarn-root-nodemanager-win-local-17.out
查看進程運行:
[root@win-local-17 hadoop]# jps
90321 NodeManager
90593 ResourceManager
80615 NameNode
80726 DataNode
90716 Jps
如果遇到報錯: 端口一直報錯無法使用,可以將端口改為8098,再重啟啟動ResourceManager正常運行了.
然后訪問web端就能看到:
參考文檔:
https://developer.aliyun.com/article/1046126
https://www.cnblogs.com/liugp/p/16607424.html#%E4%BA%8Chadoop-hdfs-ha-%E6%9E%B6%E6%9E%84%E4%B8%8E%E5%8E%9F%E7%90%86