目錄
一、用法精講
4、pandas.read_csv函數
4-1、語法
4-2、參數
4-3、功能
4-4、返回值
4-5、說明
4-6、用法
4-6-1、創建csv文件
4-6-2、代碼示例?
4-6-3、結果輸出
二、推薦閱讀
1、Python筑基之旅
2、Python函數之旅
3、Python算法之旅
4、Python魔法之旅
5、博客個人主頁
一、用法精講
4、pandas.read_csv函數
4-1、語法
# 4、pandas.read_csv函數
pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default, delimiter=None, header='infer', names=_NoDefault.no_default, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=_NoDefault.no_default, skip_blank_lines=True, parse_dates=None, infer_datetime_format=_NoDefault.no_default, keep_date_col=_NoDefault.no_default, date_parser=_NoDefault.no_default, date_format=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, on_bad_lines='error', delim_whitespace=_NoDefault.no_default, low_memory=True, memory_map=False, float_precision=None, storage_options=None, dtype_backend=_NoDefault.no_default)
Read a comma-separated values (csv) file into DataFrame.Also supports optionally iterating or breaking of the file into chunks.Additional help can be found in the online docs for IO Tools.Parameters:
filepath_or_bufferstr, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv.If you want to pass in a path object, pandas accepts any os.PathLike.By file-like object, we refer to objects with a read() method, such as a file handle (e.g. via builtin open function) or StringIO.sepstr, default ‘,’
Character or regex pattern to treat as the delimiter. If sep=None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator from only the first valid row of the file by Python’s builtin sniffer tool, csv.Sniffer. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\r\t'.delimiterstr, optional
Alias for sep.headerint, Sequence of int, ‘infer’ or None, default ‘infer’
Row number(s) containing column labels and marking the start of the data (zero-indexed). Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0 and column names are inferred from the first line of the file, if column names are passed explicitly to names then the behavior is identical to header=None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a MultiIndex on the columns e.g. [0, 1, 3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.namesSequence of Hashable, optional
Sequence of column labels to apply. If the file contains a header row, then you should explicitly pass header=0 to override the column names. Duplicates in this list are not allowed.index_colHashable, Sequence of Hashable or False, optional
Column(s) to use as row label(s), denoted either by column labels or column indices. If a sequence of labels or indices is given, MultiIndex will be formed for the row labels.Note: index_col=False can be used to force pandas to not use the first column as the index, e.g., when you have a malformed file with delimiters at the end of each line.usecolsSequence of Hashable or Callable, optional
Subset of columns to select, denoted either by column labels or column indices. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). If names are given, the document header row(s) are not taken into account. For example, a valid list-like usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Element order is ignored, so usecols=[0, 1] is the same as [1, 0]. To instantiate a DataFrame from data with element order preserved use pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] order.If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage.dtypedtype or dict of {Hashabledtype}, optional
Data type(s) to apply to either the whole dataset or individual columns. E.g., {'a': np.float64, 'b': np.int32, 'c': 'Int64'} Use str or object together with suitable na_values settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.New in version 1.5.0: Support for defaultdict was added. Specify a defaultdict as input where the default determines the dtype of the columns which are not explicitly listed.engine{‘c’, ‘python’, ‘pyarrow’}, optional
Parser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine.New in version 1.4.0: The ‘pyarrow’ engine was added as an experimental engine, and some features are unsupported, or may not work correctly, with this engine.convertersdict of {HashableCallable}, optional
Functions for converting values in specified columns. Keys can either be column labels or column indices.true_valueslist, optional
Values to consider as True in addition to case-insensitive variants of ‘True’.false_valueslist, optional
Values to consider as False in addition to case-insensitive variants of ‘False’.skipinitialspacebool, default False
Skip spaces after delimiter.skiprowsint, list of int or Callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be lambda x: x in [0, 2].skipfooterint, default 0
Number of lines at bottom of file to skip (Unsupported with engine='c').nrowsint, optional
Number of rows of file to read. Useful for reading pieces of large files.na_valuesHashable, Iterable of Hashable or dict of {HashableIterable}, optional
Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: “ “, “#N/A”, “#N/A N/A”, “#NA”, “-1.#IND”, “-1.#QNAN”, “-NaN”, “-nan”, “1.#IND”, “1.#QNAN”, “<NA>”, “N/A”, “NA”, “NULL”, “NaN”, “None”, “n/a”, “nan”, “null “.keep_default_nabool, default True
Whether or not to include the default NaN values when parsing the data. Depending on whether na_values is passed in, the behavior is as follows:If keep_default_na is True, and na_values are specified, na_values is appended to the default NaN values used for parsing.If keep_default_na is True, and na_values are not specified, only the default NaN values are used for parsing.If keep_default_na is False, and na_values are specified, only the NaN values specified na_values are used for parsing.If keep_default_na is False, and na_values are not specified, no strings will be parsed as NaN.Note that if na_filter is passed in as False, the keep_default_na and na_values parameters will be ignored.na_filterbool, default True
Detect missing value markers (empty strings and the value of na_values). In data without any NA values, passing na_filter=False can improve the performance of reading a large file.verbosebool, default False
Indicate number of NA values placed in non-numeric columns.Deprecated since version 2.2.0.skip_blank_linesbool, default True
If True, skip over blank lines rather than interpreting as NaN values.parse_datesbool, list of Hashable, list of lists or dict of {Hashablelist}, default False
The behavior is as follows:bool. If True -> try parsing the index. Note: Automatically set to True if date_format or date_parser arguments have been passed.list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.list of list. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. Values are joined with a space before parsing.dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’. Values are joined with a space before parsing.If a column or index cannot be represented as an array of datetime, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use to_datetime() after read_csv().Note: A fast-path exists for iso8601-formatted dates.infer_datetime_formatbool, default False
If True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x.Deprecated since version 2.0.0: A strict version of this argument is now the default, passing it has no effect.keep_date_colbool, default False
If True and parse_dates specifies combining multiple columns then keep the original columns.date_parserCallable, optional
Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.Deprecated since version 2.0.0: Use date_format instead, or read in as object and then apply to_datetime() as-needed.date_formatstr or dict of column -> format, optional
Format to use for parsing dates when used in conjunction with parse_dates. The strftime to parse time, e.g. "%d/%m/%Y". See strftime documentation for more information on choices, though note that "%f" will parse all the way up to nanoseconds. You can also pass:“ISO8601”, to parse any ISO8601
time string (not necessarily in exactly the same format);“mixed”, to infer the format for each element individually. This is risky,
and you should probably use it along with dayfirst.New in version 2.0.0.dayfirstbool, default False
DD/MM format dates, international and European format.cache_datesbool, default True
If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets.iteratorbool, default False
Return TextFileReader object for iteration or getting chunks with get_chunk().chunksizeint, optional
Number of lines to read from the file per chunk. Passing a value will cause the function to return a TextFileReader object for iteration. See the IO Tools docs for more information on iterator and chunksize.compressionstr or dict, default ‘infer’
For on-the-fly decompression of on-disk data. If ‘infer’ and ‘filepath_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in. Set to None for no decompression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'xz', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdDecompressor, lzma.LZMAFile or tarfile.TarFile, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: compression={'method': 'zstd', 'dict_data': my_compression_dict}.New in version 1.5.0: Added support for .tar files.Changed in version 1.4.0: Zstandard support.thousandsstr (length 1), optional
Character acting as the thousands separator in numerical values.decimalstr (length 1), default ‘.’
Character to recognize as decimal point (e.g., use ‘,’ for European data).lineterminatorstr (length 1), optional
Character used to denote a line break. Only valid with C parser.quotecharstr (length 1), optional
Character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.quoting{0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL, 2 or csv.QUOTE_NONNUMERIC, 3 or csv.QUOTE_NONE}, default csv.QUOTE_MINIMAL
Control field quoting behavior per csv.QUOTE_* constants. Default is csv.QUOTE_MINIMAL (i.e., 0) which implies that only fields containing special characters are quoted (e.g., characters defined in quotechar, delimiter, or lineterminator.doublequotebool, default True
When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single quotechar element.escapecharstr (length 1), optional
Character used to escape other characters.commentstr (length 1), optional
Character indicating that the remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing #empty\na,b,c\n1,2,3 with header=0 will result in 'a,b,c' being treated as the header.encodingstr, optional, default ‘utf-8’
Encoding to use for UTF when reading/writing (ex. 'utf-8'). List of Python standard encodings .encoding_errorsstr, optional, default ‘strict’
How encoding errors are treated. List of possible values .New in version 1.3.0.dialectstr or csv.Dialect, optional
If provided, this parameter will override values (default or not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details.on_bad_lines{‘error’, ‘warn’, ‘skip’} or Callable, default ‘error’
Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are :'error', raise an Exception when a bad line is encountered.'warn', raise a warning when a bad line is encountered and skip that line.'skip', skip bad lines without raising or warning when they are encountered.New in version 1.3.0.New in version 1.4.0:Callable, function with signature (bad_line: list[str]) -> list[str] | None that will process a single bad line. bad_line is a list of strings split by the sep. If the function returns None, the bad line will be ignored. If the function returns a new list of strings with more elements than expected, a ParserWarning will be emitted while dropping extra elements. Only supported when engine='python'Changed in version 2.2.0:Callable, function with signature as described in pyarrow documentation when engine='pyarrow'delim_whitespacebool, default False
Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the sep delimiter. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.Deprecated since version 2.2.0: Use sep="\s+" instead.low_memorybool, default True
Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser).memory_mapbool, default False
If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.float_precision{‘high’, ‘legacy’, ‘round_trip’}, optional
Specifies which converter the C engine should use for floating-point values. The options are None or 'high' for the ordinary converter, 'legacy' for the original lower precision pandas converter, and 'round_trip' for the round-trip converter.storage_optionsdict, optional
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here.dtype_backend{‘numpy_nullable’, ‘pyarrow’}, default ‘numpy_nullable’
Back-end data type applied to the resultant DataFrame (still experimental). Behaviour is as follows:"numpy_nullable": returns nullable-dtype-backed DataFrame (default)."pyarrow": returns pyarrow-backed nullable ArrowDtype DataFrame.New in version 2.0.Returns:
DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes.
4-2、參數
4-2-1、filepath_or_buffer(必須):文件的路徑對象或任何對象具有read()方法(如文件句柄或類似文件的對象)。
4-2-2、sep/delimiter(可選):字段分隔符。如果未指定,則嘗試自動檢測。使用sep而不是delimiter,其中delimiter的默認值為None。
4-2-3、header(可選,默認值為‘infer’):指定哪行(從0開始計數)作為列名,如果文件中沒有列標題,則默認為 'infer'。如果為整數或整數列表,則假定這些行是列名。如果為 'infer',則嘗試自動檢測列名。如果傳遞了None,則不會將任何行視為列名。
4-2-4、names(可選):用于結果的列名的列表,如果文件不包含列標題行,則需要提供此參數。
4-2-5、index_col(可選,默認值為None):用作行索引的列編號或列名,可以是整數、列名字符串或列名的列表。如果為None(默認),則使用從0開始的整數索引。
4-2-6、usecols(可選,默認值為None):返回一個子集的列。默認情況下,解析所有列。如果為整數列表,則返回這些位置的列;如果為字符串列表,則返回這些名稱的列。
4-2-7、dtype(可選,默認值為None):數據或列的數據類型。可以是單個類型或類型字典。
4-2-8、engine(可選,默認值為None):用于文件解析的解析引擎:{'c', 'python'},其中,'c'引擎更快,但'python'引擎是更靈活的。
4-2-9、converters(可選,默認值為None):列的轉換器字典。鍵可以是列名或列的索引(從0開始)。
4-2-10、true_values/false_values(可選,默認值為None):用于將字符串值轉換為布爾值的序列。
4-2-11、skipinitialspace(可選,默認值為False):跳過字段值的初始空格。
4-2-12、skiprows(可選,默認值為None):需要跳過的行號列表(從0開始),或跳過文件開頭的行數。
4-2-13、skipfooter(可選,默認值為0):從文件末尾跳過的行數(不支持迭代或分塊讀取)。
4-2-14、nrows(可選,默認值為None):需要讀取的行數(從文件開始算起)。
4-2-15、na_values(可選,默認值為None):附加識別為NA/missing的字符串列表。
4-2-16、keep_default_na(可選,默認值為True):如果指定了na_values參數,并且keep_default_na為False,則默認NA值將被忽略。
4-2-17、na_filter(可選,默認值為True):檢測缺失值標記(空字符串和na_values)。對于大型數據集,設置為False可以提高讀取性能。
4-2-18、verbose(可選):?如果發生錯誤,則打印更多信息。
4-2-19、skip_blank_lines(可選,默認值為True):如果為True,則跳過空行;否則將其視為NaN。
4-2-20、parse_dates(可選,默認值為False):嘗試將數據解析為日期。
4-2-21、infer_datetime_format(可選):如果為True,并且parse_dates也被啟用,pandas將嘗試推斷日期/時間的格式。
4-2-22、keep_date_col(可選):如果連接多列來解析日期,則保留原始列。
4-2-23、date_parser(可選):用于解析日期的函數。
4-2-24、date_format(可選,默認值為None):字符串或字符串列表,用于指定日期/時間的格式。
4-2-25、dayfirst(可選,默認值為False):當解析日期時,是否將日放在月之前。
4-2-26、cache_dates(可選,默認值為True):如果為True,則使用緩存的日期解析器。
4-2-27、iterator(可選,默認值為False):如果為True,則返回TextFileReader對象,用于增量迭代。
4-2-28、chunksize(可選,默認值為None):指定讀取文件的塊大小(對于迭代)。
4-2-29、compression(可選,默認值為'infer'):用于讀取文件的壓縮類型,如'gzip', 'bz2', 'zip', 'xz' 或 'infer'(如果文件擴展名已知)。
4-2-30、thousands(可選,默認值為None):千位分隔符。
4-2-31、decimal(可選,默認值'.'):小數點字符。
4-2-32、lineterminator(可選,默認值為None):行尾字符串(僅對C引擎有效)。
4-2-33、quotechar(可選,默認值為''):用于標識字段中引用的字符(僅對C引擎有效)。
4-2-34、quoting(可選,默認值為0):控制引號的處理方式的參數(僅對C引擎有效)。
4-2-35、doublequote(可選,默認值為True):當字段和引號字符都被引用時,指示是否應解釋兩個引號字符為一個(僅對C引擎有效)。
4-2-36、escapechar(可選,默認值為None):當在字段中需要包含引號字符時,用于轉義該引號字符的字符(僅對C引擎有效)。
4-2-37、comment(可選,默認值為None):標識注釋字符的開始,行中該字符之后的部分將被忽略。如果為None(默認值),則不忽略任何行。
4-2-38、encoding(可選,默認值為None):用于解碼文件的編碼。如果為None(默認值),則嘗試使用Python的locale.getpreferredencoding(False)來獲取系統默認的編碼。如果文件包含非ASCII字符,并且沒有指定編碼,這可能會導致解碼錯誤。
4-2-39、encoding_errors(可選,默認值為strict):指定如何處理編碼錯誤。有效選項包括'strict'、'ignore'、'replace'、'surrogatepass'等,'strict'(默認值)將引發異常,'ignore'將忽略錯誤,'replace'將使用?
替換錯誤字符,'surrogatepass'將允許通過代理對(surrogate pairs)表示UTF-16字符,這可能在某些情況下導致不可預見的錯誤。
4-2-40、dialect(可選,默認值為None):如果指定,則解析器將嘗試使用提供的方言參數集,這通常用于更復雜的CSV文件,其中需要更詳細的控制(如Excel CSV文件)。pandas本身并不直接支持復雜的方言定義,但這個參數可以與其他支持方言的庫(如csv模塊)一起使用,但這在pandas.read_table()中并不常見。
4-2-41、on_bad_lines(可選,默認值為'error'):指定在讀取過程中遇到“壞行”(即格式不正確的行)時的行為,有效選項包括'error'(默認值,拋出異常)、'warn'(發出警告并跳過該行)、'skip'(僅跳過該行)。
4-2-42、delim_whitespace(可選):如果為True
,則使用任何空白字符(如空格、制表符等)作為字段分隔符。注意,這與僅指定sep='\s+'
不同,因為sep='\s+'
將使用正則表達式來匹配一個或多個空白字符作為分隔符,而delim_whitespace=True則允許任何空白字符作為分隔符,并且不會將連續的空白字符視為單個分隔符。
4-2-43、low_memory(可選,默認值為True):如果為True(默認值),則嘗試以較低內存的方式讀取文件,特別是通過分塊讀取數據,這可能對于處理大文件很有用,但可能會犧牲一些性能。
4-2-44、memory_map(可選,默認值為False):如果為True,則使用內存映射文件來讀取數據,這可以提高讀取大文件的性能,但可能會增加內存使用量。
4-2-45、float_precision(可選,默認值為None):指定寫入輸出文件時浮點數的精度(小數點后的位數),這主要用于寫入操作,而不是read_table()方法的直接參數,但在這里提及以供參考。
4-2-46、storage_options(可選,默認值為None):用于存儲后端(如HDFS、S3等)的額外選項,這是一個字典,可以包含與存儲后端相關的配置選項。
4-2-47、dtype_backend(可選):指定用于處理數據類型的后端,這通常不需要用戶直接設置,因為pandas會根據文件內容和提供的其他參數自動選擇適當的后端。
4-3、功能
????????用于讀取CSV(逗號分隔值)文件并將其轉換為DataFrame對象。
4-4、返回值
????????返回一個pandas.DataFrame對象,該對象包含了從指定文件路徑或文件對象中讀取的數據。
4-5、說明
? ? ? ? 無
4-6、用法
4-6-1、創建csv文件
# 4、創建csv文件的兩種方式
# 4-1、用csv庫
import csv
# 要寫入CSV的數據
rows = [["Name", "Age", "City"],["Myelsa", 42, "New York"],["Bryce", 6, "Los Angeles"],["Jimmy", 35, "Chicago"]
]
# 打開文件以寫入,如果文件不存在則創建
with open('example.csv', 'w', newline='') as file:writer = csv.writer(file)# 寫入所有行writer.writerows(rows)
print("CSV文件已使用csv創建!")# 4-2、用Pandas庫
import pandas as pd
# 要寫入CSV的數據
data = {'Name': ['Myelsa', 'Bryce', 'Jimmy'],'Age': [42, 6, 15],'City': ['New York', 'Los Angeles', 'Chicago']
}
# 創建DataFrame
df = pd.DataFrame(data)
# 將DataFrame寫入CSV文件
df.to_csv('example.csv', index=False) # index=False表示不將行索引寫入文件
print("CSV文件已使用pandas創建!")
4-6-2、代碼示例?
# 4-3、基本讀取
import pandas as pd
# 讀取CSV文件
df = pd.read_csv('example.csv')
# 顯示前幾行數據
print(df.head())# 4-4、指定分隔符
import pandas as pd
df = pd.read_csv('example.csv', sep=';')
print(df.head())# 4-5、跳過行和指定列
import pandas as pd
# 跳過前兩行,并只讀取第一列和第三列
df = pd.read_csv('example.csv', skiprows=2, usecols=[0, 2])
print(df.head())# 4-6、 指定列名
import pandas as pd
# 假設文件沒有列頭,我們手動指定列名
df = pd.read_csv('example.csv', header=None, names=['Name_1', 'Age_1', 'City_1'])
print(df.head())
4-6-3、結果輸出
# 4-3、基本讀取
# Name Age City
# 0 Myelsa 42 New York
# 1 Bryce 6 Los Angeles
# 2 Jimmy 15 Chicago# 4-4、指定分隔符
# Name,Age,City
# 0 Myelsa,42,New York
# 1 Bryce,6,Los Angeles
# 2 Jimmy,15,Chicago# 4-5、跳過行和指定列
# Bryce Los Angeles
# 0 Jimmy Chicago# 4-6、 指定列名
# Name_1 Age_1 City_1
# 0 Name Age City
# 1 Myelsa 42 New York
# 2 Bryce 6 Los Angeles
# 3 Jimmy 15 Chicago