書生實戰營之沐曦專場

一:實驗環境進入和啟動實驗容器(D.run平臺)

1.1首先進入平臺進行注冊

? ??D.run平臺https://console.d.run/

? ? ? ? 注冊和登錄環節就跳過了。

1.2 啟動實驗容器--詳細步驟如下

????????

? ? ? ? 1.2.1選擇容器的名稱、區域、鏡像(注意鏡像必須選擇Dlinfer

1.2.2可以選擇Jupyter Lab作為實驗環境(VS code、SSH登錄可選)

在這里我選擇Jupyter lab作為環境

1.2.3 Jupyter Lab工作區域如下,打開終端可以看到對應的終端的說明

? ? ? ?如果時間過久還是啟動中,可以刷新試試,刷新頁面后,就會是運行中

1.2.4激活conda環境,并查看dlinfer安裝情況

二 LMDeploy推理及驗證

? ? ? ? 2.1 下載源碼安裝LMDeploy:

# 安裝addict軟件包
pip install addict mmengine mmengine-lite fire accelerate==0.32.1 nvidia-ml-py# 解決LMDeploy對tranformers版本要求的Iusse:
pip install transformers==4.47.1# 下載lmdeploy,并進入目錄
git clone https://github.com/InternLM/lmdeploy.git
cd lmdeploy

????????

2.1.1建議使用以下 commit進行源碼安裝:

# checkout對應的版本
git checkout 832bfc45b4497e8d16e08ecfd663671e634aae40
# 安裝lmdeploy
LMDEPLOY_TARGET_DEVICE=maca python setup.py develop

2.2?部署驗證結果,用internlm3-8b-instruct模型驗證

????????驗證程序如下:

? ? ? ? ? ?2.2.1 新建test.py文件

? ? ? ? 2.2.2 在test.py文件中添加如下的代碼內容

import lmdeploy
from lmdeploy import PytorchEngineConfigif __name__ == "__main__":pipe = lmdeploy.pipeline("/root/public-model/models/internlm/internlm3-8b-instruct",backend_config = PytorchEngineConfig(tp=1,cache_max_entry_count=0.8, device_type="maca",block_size=16))question = ["Shanghai is", "Please introduce China", "How are you?"]response = pipe(question, request_output_len=256, do_preprocess=False)for idx, r in enumerate(response):print(f"Q: {question[idx]}")print(f"A: {r.text}")print()

2.2.3 驗證程序執行如下:

????????

? ? ? ?2.2.4?運行之后出現了如下的錯誤

python test.py
/opt/conda/lib/python3.10/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: 'libpng16.so.16: cannot open shared object file: No such file or directory'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?warn(
/opt/conda/lib/python3.10/site-packages/torchvision/datapoints/__init__.py:12: UserWarning: The torchvision.datapoints and torchvision.transforms.v2 namespaces are still Beta. While we do not expect major breaking changes, some APIs may still change according to user feedback. Please submit any feedback you may have in this issue: https://github.com/pytorch/vision/issues/6753, and you can also check out https://github.com/pytorch/vision/issues/7319 to learn more about the APIs that we suspect might involve future changes. You can silence this warning by calling torchvision.disable_beta_transforms_warning().warnings.warn(_BETA_TRANSFORMS_WARNING)
/opt/conda/lib/python3.10/site-packages/torchvision/transforms/v2/__init__.py:54: UserWarning: The torchvision.datapoints and torchvision.transforms.v2 namespaces are still Beta. While we do not expect major breaking changes, some APIs may still change according to user feedback. Please submit any feedback you may have in this issue: https://github.com/pytorch/vision/issues/6753, and you can also check out https://github.com/pytorch/vision/issues/7319 to learn more about the APIs that we suspect might involve future changes. You can silence this warning by calling torchvision.disable_beta_transforms_warning().warnings.warn(_BETA_TRANSFORMS_WARNING)

? ? ? ? 2.2.5 解決步驟如下:

????????這個警告表明環境中缺少 ? libpng16.so.16 ? 文件,這通常是由于 ? libpng ? 庫未正確安裝或未被正確鏈接。? ? torchvision.io ? 模塊依賴于 ? libpng ? 和 ? libjpeg ? 來處理圖像文件,如果這些庫未正確安裝,可能會導致圖像加載功能無法正常工作。

sudo apt-get update
sudo apt-get install libpng-dev libjpeg-dev

????????

?重新安裝 ? torchvision ?

pip uninstall torchvision
pip install torchvision

???????

pip uninstall torch torchvision
pip install torch==2.4.0 torchvision==0.19.0pip install lmdeploy==0.7.0

?

在test.py的代碼中添加以下內容:

import torchvision
torchvision.disable_beta_transforms_warning()

pip uninstall torch torchvision
pip install torch==2.4.0 torchvision==0.19.0
pip uninstall vllm
pip install vllm==0.7.0

pip uninstall torch torchvision outlines
pip install torch==2.4.0 torchvision==0.19.0 outlines==0.0.9

pip uninstall torch torchvision outlines xformers
pip install torch==2.5.1 torchvision==0.20.1 outlines==0.1.11 xformers==0.0.28.post3
pip install vllm==0.7.0

依賴越下載越不對勁,因此重新創建一個實例,這個實例卸載重新測試。

?最后終于成功了。

三? XTuner微調

? ? ? ? 3.1 環境準備

實訓環境選擇及啟動:(已安裝xtuner鏡像直接啟動即可,無需安裝)

創建實例過程如下所示:

3.2 安裝必要的軟件包及激活xtuner環境

? ? ? ? 3.2.1進入終端命令行激活環境:

 conda activate base

? ? ? ? 3.2.2安裝依賴環境包

apt -y install git
conda activate base
pip install mpi4py

????????為了驗證 XTuner 是否安裝正確,我們將使用命令打印配置文件。

????????打印配置文件: 在命令行中使用 xtuner list-cfg 驗證是否能打印配置文件列表。

xtuner list-cfg |grep internlm

#git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune

??3.3 修改提供的數據集

? ? ? ? 3.3.1. 創建一個新的文件夾用于存儲微調數據

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data

????????3.3.2 創建修改腳本

????????我們寫一個腳本生成修改我們需要的微調訓練數據,在當前目錄下創建一個 change_script.py 文件,內容如下:

# 創建 change_script.py 文件
touch /root/finetune/data/change_script.py
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# touch /root/finetune/data/change_script.py
touch: cannot touch '/root/finetune/data/change_script.py': Not a directory
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ls
data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# cd data
bash: cd: data: Not a directory
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ls
data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# pwd
/root/finetune
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# touch change_script.py

打開該change_script.py文件后將下面的內容復制進去。

import json
import argparse
from tqdm import tqdmdef process_line(line, old_text, new_text):# 解析 JSON 行data = json.loads(line)# 遞歸函數來處理嵌套的字典和列表def replace_text(obj):if isinstance(obj, dict):return {k: replace_text(v) for k, v in obj.items()}elif isinstance(obj, list):return [replace_text(item) for item in obj]elif isinstance(obj, str):return obj.replace(old_text, new_text)else:return obj# 處理整個 JSON 對象processed_data = replace_text(data)# 將處理后的對象轉回 JSON 字符串return json.dumps(processed_data, ensure_ascii=False)def main(input_file, output_file, old_text, new_text):with open(input_file, 'r', encoding='utf-8') as infile, \open(output_file, 'w', encoding='utf-8') as outfile:# 計算總行數用于進度條total_lines = sum(1 for _ in infile)infile.seek(0)  # 重置文件指針到開頭# 使用 tqdm 創建進度條for line in tqdm(infile, total=total_lines, desc="Processing"):processed_line = process_line(line.strip(), old_text, new_text)outfile.write(processed_line + '\n')if __name__ == "__main__":parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")parser.add_argument("input_file", help="Input JSONL file to process")parser.add_argument("output_file", help="Output file for processed JSONL")parser.add_argument("--old_text", default="尖米", help="Text to be replaced")parser.add_argument("--new_text", default="聞星", help="Text to replace with")args = parser.parse_args()main(args.input_file, args.output_file, args.old_text, args.new_text)

????????然后修改如下: 打開 change_script.py ,修改 --new_textdefault="聞星" 為你的名字。

if __name__ == "__main__":parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")parser.add_argument("input_file", help="Input JSONL file to process")parser.add_argument("output_file", help="Output file for processed JSONL")parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
-        parser.add_argument("--new_text", default="聞星", help="Text to replace with")
+ ? parser.add_argument("--new_text", default="沐曦", help="Text to replace with")args = parser.parse_args()

3.3.3?執行腳本

# usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl

? ? ? ? 出錯了,按照那個直接復制粘貼執行,我的出現了這個錯誤,顯示data都是一個文件而不是文件夾

詳細解決過程如下所示:
?

bash: cd: /root/finetune/data: Not a directory
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl
Traceback (most recent call last):File "/root/finetune/change_script.py", line 47, in <module>main(args.input_file, args.output_file, args.old_text, args.new_text)File "/root/finetune/change_script.py", line 27, in mainwith open(input_file, 'r', encoding='utf-8') as infile, \
FileNotFoundError: [Errno 2] No such file or directory: './assistant_Tuner.jsonl'
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# cd  /root/finetune/data
bash: cd: /root/finetune/data: Not a directory
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# cd  /root/Tutorial/data
(base) root@ins-txrwm-c598d768f-c8l85:~/Tutorial/data# ls
assistant_Tuner.jsonl  data
(base) root@ins-txrwm-c598d768f-c8l85:~/Tutorial/data# cp assistant_Tuner.jsonl /root/finetune
(base) root@ins-txrwm-c598d768f-c8l85:~/Tutorial/data# cd  /root/finetune
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ls
assistant_Tuner.jsonl  change_script.py  data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# mkdir data
mkdir: cannot create directory ‘data’: File exists
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# rm data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# mkdir data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ll
total 2580
drwxr-xr-x 3 root root    4096  5月  2 13:50 ./
drwx------ 1 root root    4096  5月  2 13:44 ../
-rw-r--r-- 1 root root 2621026  5月  2 13:50 assistant_Tuner.jsonl
-rw-r--r-- 1 root root    1844  5月  2 13:37 change_script.py
drwxr-xr-x 2 root root    4096  5月  2 13:50 data/
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# cd data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune/data# ls
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune/data# cd ..
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ls
assistant_Tuner.jsonl  change_script.py  data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# mv change_script.py data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ls
assistant_Tuner.jsonl  data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# cd data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune/data# ls
change_script.py
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune/data# cd ..
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ls
assistant_Tuner.jsonl  data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# mv assistant_Tuner.jsonl data
(base) root@ins-txrwm-c598d768f-c8l85:~/finetune# ls
data

? 進入data目錄再次執行腳本文件

python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl

????????

? ? ? 3.3.4? 查看數據

cat assistant_Tuner_change.jsonl | head -n 3

????????

3.4 準備訓練腳本

????????模型文件位置【用1.8B模型微調】:/root/public-????????model/models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat

????????xtuner的微調官方配置文件位置:/workspace/xtuner/examples

獲取官方寫好的訓練配置文件:

# 切換到finetune的目錄,cd {path/to/finetune}
cd /root/finetune
mkdir ./config
cd config
# 這里使用lora微調
cp /workspace/xtuner/examples/lora/internlm2_5_1.8b_lora_alpaca_e3_copy.py .

????????3.4.1訓練參數調整及訓練啟動

????????步驟1:修改微調參數

internlm2_5_1.8b_lora_alpaca_e3_copy.py修改如下【關注黃色部分】:

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig)from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,ThroughputHook,VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = '/root/public-model/models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat'
use_varlen_attn = False# Data
alpaca_en_path = '/root/finetune/data/assistant_Tuner_change.jsonl'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True# parallel
sequence_parallel_size = 1# Scheduler & Optimizer
batch_size = 1  # per_device
accumulative_counts = 1
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip
warmup_ratio = 0.03# Save
save_steps = 500
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ['請介紹一下你自己', 'Please introduce yourself'
]#######################################################################
#                      PART 2  Model & Tokenizer                      #
#######################################################################
tokenizer = dict(type=AutoTokenizer.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,padding_side='right')model = dict(type=SupervisedFinetune,use_varlen_attn=use_varlen_attn,llm=dict(type=AutoModelForCausalLM.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=dict(type=BitsAndBytesConfig,load_in_4bit=True,load_in_8bit=False,llm_int8_threshold=6.0,llm_int8_has_fp16_weight=False,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type='nf4')),lora=dict(type=LoraConfig,r=64,lora_alpha=16,lora_dropout=0.1,bias='none',task_type='CAUSAL_LM'))#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)sampler = SequenceParallelSampler \if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(batch_size=batch_size,num_workers=dataloader_num_workers,dataset=alpaca_en,sampler=dict(type=sampler, shuffle=True),collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(type=AmpOptimWrapper,optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),accumulative_counts=accumulative_counts,loss_scale='dynamic',dtype='bfloat16')# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [dict(type=LinearLR,start_factor=1e-5,by_epoch=True,begin=0,end=warmup_ratio * max_epochs,convert_to_iter_based=True),dict(type=CosineAnnealingLR,eta_min=0.0,by_epoch=True,begin=warmup_ratio * max_epochs,end=max_epochs,convert_to_iter_based=True)
]# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer),dict(type=EvaluateChatHook,tokenizer=tokenizer,every_n_iters=evaluation_freq,evaluation_inputs=evaluation_inputs,system=SYSTEM,prompt_template=prompt_template),dict(type=ThroughputHook)
]if use_varlen_attn:custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type=IterTimerHook),# print log every 10 iterations.logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=1),# enable the parameter scheduler.param_scheduler=dict(type=ParamSchedulerHook),# save checkpoint per `save_steps`.checkpoint=dict(type=CheckpointHook,by_epoch=False,interval=save_steps,max_keep_ckpts=save_total_limit),# set sampler seed in distributed evrionment.sampler_seed=dict(type=DistSamplerSeedHook),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
visualizer = None# set log level
log_level = 'INFO'# load from which checkpoint
load_from = None# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)# set log processor
log_processor = dict(by_epoch=False)

? ?修改完成之后的文件內容如下所示:

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig)from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (DatasetInfoHook, EvaluateChatHook,ThroughputHook,VarlenAttnArgsToMessageHubHook)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
pretrained_model_name_or_path = '/root/public-model/models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat'
use_varlen_attn = False# Data
alpaca_en_path = '/root/finetune/data/assistant_Tuner_change.jsonl'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True# parallel
sequence_parallel_size = 1# Scheduler & Optimizer
batch_size = 1  # per_device
accumulative_counts = 1
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip
warmup_ratio = 0.03# Save
save_steps = 500
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ['請介紹一下你自己', 'Please introduce yourself'
]#######################################################################
#                      PART 2  Model & Tokenizer                      #
#######################################################################
tokenizer = dict(type=AutoTokenizer.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,padding_side='right')model = dict(type=SupervisedFinetune,use_varlen_attn=use_varlen_attn,llm=dict(#type=AutoModelForCausalLM.from_pretrained,#pretrained_model_name_or_path=pretrained_model_name_or_path,#trust_remote_code=True,#torch_dtype=torch.bfloat16,#quantization_config=None),type=AutoModelForCausalLM.from_pretrained,pretrained_model_name_or_path=pretrained_model_name_or_path,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=dict(type=BitsAndBytesConfig,load_in_4bit=True,load_in_8bit=False,llm_int8_threshold=6.0,llm_int8_has_fp16_weight=False,bnb_4bit_compute_dtype=torch.float16,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type='nf4')),lora=dict(type=LoraConfig,r=64,lora_alpha=16,lora_dropout=0.1,bias='none',task_type='CAUSAL_LM'))#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(type=process_hf_dataset,#dataset=dict(type=load_dataset, path=alpaca_en_path),dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),tokenizer=tokenizer,max_length=max_length,dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length,use_varlen_attn=use_varlen_attn)sampler = SequenceParallelSampler \if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(batch_size=batch_size,num_workers=dataloader_num_workers,dataset=alpaca_en,sampler=dict(type=sampler, shuffle=True),collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn))#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(type=AmpOptimWrapper,optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),accumulative_counts=accumulative_counts,loss_scale='dynamic',dtype='bfloat16')# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [dict(type=LinearLR,start_factor=1e-5,by_epoch=True,begin=0,end=warmup_ratio * max_epochs,convert_to_iter_based=True),dict(type=CosineAnnealingLR,eta_min=0.0,by_epoch=True,begin=warmup_ratio * max_epochs,end=max_epochs,convert_to_iter_based=True)
]# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer),dict(type=EvaluateChatHook,tokenizer=tokenizer,every_n_iters=evaluation_freq,evaluation_inputs=evaluation_inputs,system=SYSTEM,prompt_template=prompt_template),dict(type=ThroughputHook)
]if use_varlen_attn:custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type=IterTimerHook),# print log every 10 iterations.logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=1),# enable the parameter scheduler.param_scheduler=dict(type=ParamSchedulerHook),# save checkpoint per `save_steps`.checkpoint=dict(type=CheckpointHook,by_epoch=False,interval=save_steps,max_keep_ckpts=save_total_limit),# set sampler seed in distributed evrionment.sampler_seed=dict(type=DistSamplerSeedHook),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
visualizer = None# set log level
log_level = 'INFO'# load from which checkpoint
load_from = None# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)# set log processor
log_processor = dict(by_epoch=False)
步驟2:啟動微調
cd /root/finetune
xtuner train ./config/internlm2_5_1.8b_lora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

?由于這一步時間太長,出問題了,試了好多次都不行,所以去重新創建了個實例。

?然后再次重復上面的操作,最終成功了。

步驟 3. 權重轉換【HuggingFace格式文件】

????????

cd /root/finetune/work_dirs/assistTuner
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU

注意:這里選擇的模型迭代最后一次的文件

xtuner convert pth_to_hf internlm2_5_1.8b_lora_alpaca_e3_copy.py  /root/finetune/work_dirs/assistTuner/iter_927.pth .pth ./hf

步驟 4. 模型合并
cd /root/finetune/work_dirs/assistTuner
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU# 把微調模型合并成成一個
xtuner convert merge /root/public-model/models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat ./hf ./merged --max-shard-size 2GB

????????步驟 5. 驗證結果

采用tranformers做一個簡單的測試程序'test.py'如下:

from transformers import AutoTokenizer, AutoModelForCausalLM# 使用GPU
model_name = "/root/finetune/work_dirs/assistTuner/merged"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda')# 處理輸入
prompt = "請介紹一下你自己"
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')# 生成配置
outputs = model.generate(input_ids=inputs.input_ids,max_new_tokens=100,do_sample=True,temperature=0.8,top_p=0.95,pad_token_id=tokenizer.eos_token_id
)# 解碼結果
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

????????

到此為止,終于完成了這個任務,幾經波折!!!!

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/web/78175.shtml
繁體地址,請注明出處:http://hk.pswp.cn/web/78175.shtml
英文地址,請注明出處:http://en.pswp.cn/web/78175.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

內置類型成員變量的初始化詳解

在 C 中&#xff0c;內置類型&#xff08;如 int、float、double、char、指針等&#xff09;的初始化方式與類類型&#xff08;如 std::string、自定義類&#xff09;不同。由于內置類型沒有構造函數&#xff0c;它們的初始化行為由編譯器直接處理。以下是詳細解析&#xff1a;…

對第三方軟件開展安全測評,如何保障其安全使用?

對第三方軟件開展安全測評&#xff0c;能夠精準找出軟件存在的各類安全隱患&#xff0c;進而為軟件的安全使用給予保障。此次會從漏洞發現、風險評估、測試環境等多個方面進行具體說明。 漏洞發現情況 在測評過程中&#xff0c;我們借助專業技術與工具&#xff0c;對第三方軟…

11.Spring Boot 3.1.5 中使用 SpringDoc OpenAPI(替代 Swagger)生成 API 文檔

Spring Boot 3.1.5 中使用 SpringDoc OpenAPI&#xff08;替代 Swagger&#xff09;生成 API 文檔 1. 項目結構 假設項目名為 springboot-openapi-demo&#xff0c;以下是項目的基本結構&#xff1a; springboot-openapi-demo/ ├── src/ │ ├── main/ │ │ ├─…

python入門(1)變量與輸入輸出

一、變量 使用規則 變量名值例子 a13變量名規則 變量名可以用大小寫字母、數字、下劃線。 數字、下劃線不可開頭 例子 name name1 1name name_first _first 二、輸入輸出 輸出print print(*objects,sep"",end"\n") objects:多個要輸出的值 sep:每個…

TS 安裝

TS較JS優勢 1 TS靜態類型編程語言。編譯時發現錯誤 2 類型系統 強化變量類型概念 3 支持新語法 4 類型推斷機制 可以和React框架中的各種hook配合 5 任何地方都有代碼提示 tsc 命令 將TS轉為JS 1 tsc 文件.ts 生成 js文件 2 執行JS代碼

Linux-常用監控工具

以下是對 Linux 系統中常用監控工具&#xff08;netstat、ss、dmesg&#xff09;的系統性介紹&#xff0c;涵蓋其核心功能、典型用法及實際應用場景&#xff0c;幫助您分析系統狀態和內核參數調整后的效果&#xff1a; 1. netstat -s&#xff1a;網絡協議棧統計監控 功能 net…

Linux系統:詳解文件描述符與重定向原理以及相關接口(open,read,write,dup2)

本節重點 從狹義與廣義角度理解文件理解文件描述符掌握open,write,read系統調用理解重定向的概念與原理掌握重定向的指令操作stdout與stderr的比較為什么存在stderr&#xff1f; 一、理解“文件” 1.1 狹義角度 在狹義層面&#xff0c;Linux文件是磁盤或存儲設備上連續或分…

美國市場變局:沃爾瑪95%覆蓋率的3個流量入口重構策略

過去幾年&#xff0c;美國零售市場經歷了極大的變化。電商發展迅猛&#xff0c;加上疫情影響&#xff0c;消費者購物習慣出現轉向。而作為美國零售巨頭&#xff0c;沃爾瑪&#xff08;Walmart&#xff09;憑借高達95%的線下覆蓋率&#xff0c;始終是品牌和賣家不可忽視的渠道。…

一文詳解 Linux下的開源打印系統CUPS(Common UNIX Printing System)

文章目錄 前言一、CUPS 簡介二、CUPS 常用指令解析2.1 安裝 CUPS2.2 啟動/重啟服務2.3 添加打印機&#xff08;核心操作&#xff09;2.4 設置默認打印機2.5 打印文件2.6 查看打印任務2.7 取消打印任務2.8 查看、移除已添加的打印機 三、調試與常見問題3.1 日志查看3.2 驅動問題…

React useCallback函數

應用場景&#xff1a;父組件向子組件傳遞函數類型的props時

python 桌面程序開發簡述及示例

Python桌面程序開發簡述及示例 Python憑借其簡潔的語法和豐富的庫支持,非常適合開發跨平臺的桌面應用程序。本文將介紹Python桌面開發的主要方法,并提供實際代碼示例。 一、Python桌面開發主要方法 1.1 Tkinter(標準庫) Python內置的GUI庫,適合開發簡單桌面應用 1.2 …

數字智慧方案5875丨智慧交通樞紐綜合解決方案(43頁PPT)(文末有下載方式)

篇幅所限&#xff0c;本文只能提供部分資料內容&#xff0c;完整資料請看下面鏈接 https://download.csdn.net/download/2301_78256053/89575708 資料解讀&#xff1a;智慧交通樞紐綜合解決方案 詳細資料請看本解讀文章的最后內容。 隨著城市化進程的加速和交通需求的不斷增…

企業級分布式 MCP 方案

飛書原文檔鏈接地址&#xff1a;https://ik3te1knhq.feishu.cn/wiki/D8kSwC9tFi61CMkRdd8cMxNTnpg 企業級分布式 MCP 方案 [!TIP] 背景&#xff1a;現階段 MCP Client 和 MCP Server 是一對一的連接方式&#xff0c;若當前 MCP Server 掛掉了&#xff0c;那么 MCP Client 便不…

【AI提示詞】奧卡姆剃刀思維模型專家

提示說明 一位專注于奧卡姆剃刀思維模型的專業人士&#xff0c;擅長將簡潔性原則應用于復雜問題的分析與解決。 提示詞 # Role: 奧卡姆剃刀思維模型專家## Profile - language: 中文 - description: 一位專注于奧卡姆剃刀思維模型的專業人士&#xff0c;擅長將簡潔性原則應用…

2.1 行列式

引言 行列式是線性代數的核心工具&#xff0c;貫穿矩陣運算、特征值計算與微分方程求解。本文系統梳理2.1節核心考點&#xff0c;結合公式速查與典型例題&#xff0c;助你高效突破行列式難點&#xff01; 考點一&#xff1a;數值型行列式計算 1?? 行列式的定義 (1) 定義方…

單詞規律(簡單)

思路和同構字符串那道題一樣。、但是這道題要注意的地方就是&#xff0c;檢查 pattern 和 s 的單詞數量是否一致以及在進行字符串比較的時候應該用equals來進行比較&#xff0c;而不能用“&#xff01;”&#xff0c;“&#xff01;”比較的是對象引用而非內容。 class Soluti…

【C++】認識map和set

目錄 前言&#xff1a; 一&#xff1a;認識map和set 二&#xff1a;map和set的使用 1.set的使用 2.map的使用 三&#xff1a;map的insert方法返回值 四&#xff1a;map的[ ]的使用 五&#xff1a;multiset和multimap 六&#xff1a;map和set的底層數據結構 七&#x…

Mybatis中的一級二級緩存掃盲

思維導圖&#xff1a; MyBatis 提供了一級緩存和二級緩存機制&#xff0c;用于提高數據庫查詢的性能&#xff0c;減少對數據庫的訪問次數。&#xff08;本質上是減少IO次數&#xff09;。 一級緩存 1. 概念 一級緩存也稱為會話緩存&#xff0c;它是基于 SqlSession 的緩存。在同…

uniapp 實現低功耗藍牙連接并讀寫數據實戰指南

在物聯網應用場景中&#xff0c;低功耗藍牙&#xff08;BLE&#xff09;憑借其低能耗、連接便捷的特點&#xff0c;成為設備間數據交互的重要方式。Uniapp 作為一款跨平臺開發框架&#xff0c;提供了豐富的 API 支持&#xff0c;使得在多個端實現低功耗藍牙功能變得輕松高效。本…

OpenSSL應用實踐:嵌入式數據安全實戰指南

文章目錄 OpenSSL應用實踐:嵌入式數據安全實戰指南一、嵌入式安全現狀與OpenSSL適配方案1.1 嵌入式安全挑戰1.2 OpenSSL精簡方案二、開發環境搭建2.1 交叉編譯工具鏈2.2 OpenSSL交叉編譯三、核心功能實現3.1 AES-GCM加密實踐四、實戰項目:安全OTA升級4.1 系統架構4.2 關鍵代碼…