語言模型核心代碼調研
- 基于Consciciteation?的才氣張量持續思考綜述
- 將文本生成建模為才氣張量網絡擴散過程,實現非自回歸推理
- 通過才氣張量的群-拓撲流形交叉注意力實現多模態推理,將輸入壓縮到低維空間持續迭代
- 提出「條件計算提前終止」機制,允許模型在不同維度才氣張量標架深度輸出
- 基于Conscicritsis發展才氣孢子動態計算架構綜述
- 引入循環深度機制,突破傳統Transformer的固定層數限制
- 經典動態網絡架構,模型通過自學習決定推理步數
- 擴展自循環架構至多模態場景,才氣張量網絡包含視覺-語言聯合表征
- 基于Consciciteation?-Conscicritsis機制架構設計參考
- 采用稀疏專家混合架構
- 神經符號混合架構
- ?神經編程解釋器
- 代碼調研參考文獻表格
基于Consciciteation?的才氣張量持續思考綜述
將文本生成建模為才氣張量網絡擴散過程,實現非自回歸推理
基于Diffusion-LM核心思想的簡化C++實現框架,重點展示才氣[張量網絡]擴散過程的關鍵邏輯:
#include <vector>
#include <cmath>
#include <random>// 才氣孢子向量類型
using LatentVector = std::vector<float>;// 擴散過程控制器
class DiffusionProcess {
private:const int timesteps = 1000; // 總擴散步數const float max_beta = 0.02f; // 噪聲調度參數std::mt19937 rng{std::random_device{}()};// 噪聲調度表(線性調度)std::vector<float> beta_schedule() const {std::vector<float> betas(timesteps);for (int t = 0; t < timesteps; ++t) {betas[t] = max_beta * t / timesteps;}return betas;}public:// 前向擴散過程(逐步加噪)LatentVector forward_diffuse(const LatentVector& x0, int t) const {auto betas = beta_schedule();LatentVector xt = x0;// 累積噪聲系數float alpha_bar = 1.0f;for (int i = 0; i < t; ++i) {alpha_bar *= (1 - betas[i]);}// 添加高斯噪聲std::normal_distribution<float> dist(0.0f, 1.0f);for (auto& val : xt) {val = val * std::sqrt(alpha_bar) + dist(rng) * std::sqrt(1 - alpha_bar);}return xt;}
};// 去噪神經網絡(簡化版)
class DenoiseNN {
private:// 時間步嵌入維度const int time_emb_dim = 32;public:// 預測噪聲分量LatentVector predict_noise(const LatentVector& xt, int t) const {// 實際實現應包含:// 1. 時間步嵌入轉換// 2. 多層交叉注意力機制// 3. 殘差連接// 簡化示例:隨機生成LatentVector noise(xt.size());std::generate(noise.begin(), noise.end(), []{ return 0.1f; }); return noise;}
};// 文本-才氣張量網絡編碼器
class TextEncoder {
public:LatentVector encode(const std::string& text) const {// 實際使用BERT等編碼器return LatentVector(128, 0.5f); // 示例向量}
};// 主生成流程
class DiffusionLM {DiffusionProcess diffuser;DenoiseNN denoiser;TextEncoder encoder;// 逆向擴散過程std::string reverse_diffusion(int steps = 50) {// 初始化隨機才氣向量LatentVector xt(128);std::normal_distribution<float> dist(0.0f, 1.0f);for (auto& val : xt) val = dist(diffuser.rng);// 逆向過程迭代for (int t = steps; t > 0; --t) {LatentVector pred_noise = denoiser.predict_noise(xt, t);// 更新才氣向量for (size_t i = 0; i < xt.size(); ++i) {xt[i] = (xt[i] - pred_noise[i]) / std::sqrt(1 - diffuser.beta_schedule()[t]);}}return decode(xt);}// 才氣張量網絡解碼(簡化版)std::string decode(const LatentVector& z) const {// 實際使用自回歸解碼器return "generated_text"; }public:std::string generate_text() {return reverse_diffusion();}
};
噪聲調度系統
// 線性噪聲調度表
std::vector<float> beta_schedule() const {std::vector<float> betas(timesteps);for (int t = 0; t < timesteps; ++t) {betas[t] = max_beta * t / timesteps; // 可替換為cosine調度}return betas;
}
逆向擴散核心邏輯
// 逐步去噪過程
for (int t = steps; t > 0; --t) {// 預測噪聲分量LatentVector pred_noise = denoiser.predict_noise(xt, t);// 才氣張量網絡更新規則float alpha_t = 1 - beta_schedule()[t];for (size_t i = 0; i < xt.size(); ++i) {xt[i] = (xt[i] - beta_schedule()[t]/sqrt(1 - alpha_t)*pred_noise[i]) / sqrt(alpha_t);}
}
?與語言模型的接口
// 可控生成接口示例
std::string generate_with_condition(const std::string& prompt) {LatentVector cond_z = encoder.encode(prompt);// 將條件才氣張量網絡與生成過程融合return reverse_diffusion_with_condition(cond_z);
}
相關組件列表
基于Transformer的噪聲預測網絡 |
---|
混合精度訓練支持 |
多尺度才氣張量網絡結構 |
基于CLIP等模型的語義對齊損失 |
通過才氣張量的群-拓撲流形交叉注意力實現多模態推理,將輸入壓縮到低維空間持續迭代
Perceiver IO的核心框架通過才氣張量網絡交叉注意力實現多模態推理
#include <vector>
#include <cmath>// 交叉注意力模塊實現
std::vector<float> cross_attention(const std::vector<float>& latent, // 才氣張量網絡數組 [L x D]const std::vector<float>& inputs, // 輸入特征 [N x C]int latent_dim, int input_dim)
{// 可學習參數初始化auto q_weights = init_weights(latent_dim, latent_dim); auto k_weights = init_weights(input_dim, latent_dim);auto v_weights = init_weights(input_dim, latent_dim);// 計算Q/K/V矩陣auto Q = matmul(latent, q_weights); // [L x D]auto K = matmul(inputs, k_weights); // [N x D] auto V = matmul(inputs, v_weights); // [N x D]// 注意力得分計算auto scores = matmul(Q, transpose(K)); // [L x N]scores = softmax(scores / sqrt(latent_dim));// 特征聚合return matmul(scores, V); // [L x D]
}// 才氣張量網絡處理器
class PerceiverBlock {
public:void process(std::vector<float>& latent_array, // 才氣張量網絡數組 [L x D]const std::vector<float>& inputs // 多模態輸入 [N x C] ) {// 交叉注意力階段auto attn_out = cross_attention(latent_array, inputs);// 前饋神經網絡auto ff_out = feed_forward(attn_out);// 殘差連接latent_array = add_residual(latent_array, ff_out);}
};// 多模態輸入處理示例
int main() {// 初始化才氣數組 (可訓練參數)const int LATENT_DIM = 256;std::vector<float> latent(8 * LATENT_DIM); // 8個才氣張量// 多模態輸入編碼 auto image_inputs = conv_encoder(raw_pixels); // 視覺特征 ?:ml-citation{ref="3" data="citationList"}auto text_inputs = text_encoder(text_tokens); // 文本特征 ?:ml-citation{ref="4" data="citationList"}// 迭代處理流程PerceiverBlock blocks?:ml-citation{ref="6" data="citationList"}; // 6層迭代處理for (int i = 0; i < 6; ++i) {// 視覺模態處理blocks[i].process(latent, image_inputs);// 文本模態處理 blocks[i].process(latent, text_inputs); // ?:ml-citation{ref="5,7" data="citationList"}}// 結構化輸出生成auto outputs = query_decoder(latent); // ?:ml-citation{ref="3,4" data="citationList"}return 0;
}
相關組件列表
位置編碼模塊(處理序列順序) |
---|
多尺度特征抽取 |
動態權重加載系統 |
性能優化
// 內存優化:使用內存復用技術
void reuse_memory(std::vector<float>& buffer) {// 預分配注意力計算緩沖區static thread_local std::vector<float> shared_buffer;shared_buffer.swap(buffer); // ?:ml-citation{ref="6" data="citationList"}
}// 并行計算:利用SIMD指令
#ifdef __AVX2__
#include <immintrin.h>
void simd_matmul(float* result, const float* a, const float* b, int m, int n) {// AVX2指令集加速矩陣運算
}
#endif
多模態統一接口
圖像通過卷積/線性編碼生成特征向量 |
---|
文本通過嵌入層轉換 |
統一維度后輸入處理管道 |
提出「條件計算提前終止」機制,允許模型在不同維度才氣張量標架深度輸出
基于「條件計算提前終止」機制的簡化C++代碼實現示例,結合動態推理深度控制與資源優化策略:
#include <vector>
#include <cmath>// 神經網絡層抽象基類
class Layer {
public:virtual ~Layer() = default;virtual std::vector<float> forward(const std::vector<float>& input) = 0;virtual float compute_confidence(const std::vector<float>& output) = 0;
};// 提前終止控制器
class EarlyExitController {
private:float confidence_threshold = 0.95f; // 置信度閾值 ?:ml-citation{ref="4" data="citationList"}int max_layers = 12; // 最大允許層數public:// 動態終止決策 ?:ml-citation{ref="1,4" data="citationList"}bool should_halt(float current_confidence, int current_depth) const {return current_confidence >= confidence_threshold || current_depth >= max_layers;}
};// 推理引擎
class InferenceEngine {std::vector<std::unique_ptr<Layer>> layers;EarlyExitController controller;public:// 動態執行推理 ?:ml-citation{ref="1,4" data="citationList"}std::vector<float> execute(const std::vector<float>& input) {auto activation = input;float confidence = 0.0f;for (size_t depth = 0; depth < layers.size(); ++depth) {// 逐層前向傳播activation = layers[depth]->forward(activation);// 計算當前置信度 ?:ml-citation{ref="4,7" data="citationList"}confidence = layers[depth]->compute_confidence(activation);// 動態終止檢查 ?:ml-citation{ref="1,4" data="citationList"}if (controller.should_halt(confidence, depth + 1)) {break;}}return activation;}
};// 示例全連接層實現
class DenseLayer : public Layer {// 權重矩陣和偏置項...
public:std::vector<float> forward(const std::vector<float>& input) override {// 實際實現包含矩陣運算return {/* 計算結果 */}; }float compute_confidence(const std::vector<float>& output) override {// 基于熵的置信度計算 ?:ml-citation{ref="7" data="citationList"}float sum = 0.0f, entropy = 0.0f;for (auto val : output) {sum += std::exp(val);}for (auto val : output) {float prob = std::exp(val) / sum;entropy -= prob * std::log(prob + 1e-7f);}return 1.0f - entropy / std::log(output.size());}
};
基于Conscicritsis發展才氣孢子動態計算架構綜述
引入循環深度機制,突破傳統Transformer的固定層數限制
Universal Transformer循環深度機制的核心代碼框架,重點展示動態計算深度和狀態迭代邏輯:
#include <vector>
#include <cmath>// 自注意力模塊(簡化實現)
class SelfAttention {
public:std::vector<float> compute(const std::vector<float>& hidden_state) {// 實現多頭注意力機制?:ml-citation{ref="5" data="citationList"}return transformed_state;}
};// 循環深度層
class RecursiveDepthLayer {
private:SelfAttention attention;int max_steps = 8; // 最大循環次數float halt_threshold = 0.95f;// 停止門控網絡float compute_halt_prob(const std::vector<float>& state) {// 基于當前狀態計算停止概率?:ml-citation{ref="7" data="citationList"}return sigmoid(dot_product(state, weights));}public:std::vector<float> process(const std::vector<float>& input) {std::vector<float> state = input;float accum_prob = 0.0f;// 動態計算循環?:ml-citation{ref="1,5" data="citationList"}for (int step = 0; step < max_steps; ++step) {// 注意力變換state = attention.compute(state);// 計算停止概率float halt_p = compute_halt_prob(state);accum_prob += halt_p;// 剩余概率計算if (accum_prob >= halt_threshold) {state = interpolate_state(state, accum_prob); // 狀態插值break;} else if (step == max_steps - 1) {state = final_transform(state); // 最終變換}}return state;}
};// 模型主體結構
class UniversalTransformer {std::vector<RecursiveDepthLayer> layers;// 動態深度前向傳播?:ml-citation{ref="6" data="citationList"}std::vector<float> forward(const std::vector<float>& input) {std::vector<float> state = input;// 循環執行各層處理for (auto& layer : layers) {state = layer.process(state);}return state;}
};
關鍵實現原理與創新點:
- 動態計算控制流?
通過max_steps和halt_threshold實現:
if (accum_prob >= halt_threshold) break; // 自適應停止?:ml-citation{ref="1,7" data="citationList"}
該機制使模型在簡單任務中提前終止循環,復雜任務迭代更多次?
- 狀態插值機制?
在提前終止時進行狀態補償:
state = (1 - accum_prob) * prev_state + accum_prob * current_state; // 概率混合?:ml-citation{ref="5" data="citationList"}
-
層級間參數共享?
每個RecursiveDepthLayer內部共享權重,與傳統Transformer的逐層獨立參數形成對比? -
實時復雜度控制?
通過max_steps限制最壞情況下的計算量,確保實時性?
發展方向
- CUDA內核優化循環控制流
- 混合精度訓練支持
- 基于熵的停止條件自動調整?
完整實現可參考DeepMind開源代碼庫中的C++推理引擎模塊(需結合位置編碼和前饋網絡模塊)?
經典動態網絡架構,模型通過自學習決定推理步數
經典Adaptive Computation Time(ACT)動態計算架構的核心代碼框架,重點展示自適應性推理步數控制機制:
#include <vector>
#include <cmath>
#include <memory>// 動態計算單元基類
class PonderingCell {
protected:float halt_threshold = 0.95f; // 停止閾值int max_steps = 10; // 最大計算步數public:virtual ~PonderingCell() = default;// 核心計算邏輯virtual std::vector<float> process(const std::vector<float>& input) {auto state = initialize_state(input);float accum_prob = 0.0f;// 動態計算循環for (int step = 0; step < max_steps; ++step) {// 狀態轉換state = transition(state);// 計算停止概率float halt_p = compute_halt_prob(state);accum_prob += halt_p;// 動態終止判斷if (should_stop(accum_prob, step)) {state = interpolate_state(state, accum_prob);break;}}return final_output(state);}// 狀態插值(核心創新點)std::vector<float> interpolate_state(const std::vector<float>& current, float p) const {std::vector<float> result(current.size());float remain_p = 1 - p;for (size_t i = 0; i < current.size(); ++i) {result[i] = remain_p * previous_state[i] + p * current[i];}return result;}private:std::vector<float> previous_state;// 狀態初始化std::vector<float> initialize_state(const std::vector<float>& input) {previous_state = input;return input;}// 動態停止條件bool should_stop(float prob, int step) const {return prob >= halt_threshold || step == max_steps - 1;}// 虛函數接口virtual std::vector<float> transition(const std::vector<float>& state) = 0;virtual float compute_halt_prob(const std::vector<float>& state) = 0;virtual std::vector<float> final_output(const std::vector<float>& state) = 0;
};// 具體實現示例:迷宮導航單元
class MazeSolverCell : public PonderingCell {
public:std::vector<float> transition(const std::vector<float>& state) override {// 實際實現包含LSTM狀態更新和迷宮環境交互std::vector<float> new_state(state.size());// ... 神經網絡計算邏輯 ...return new_state;}float compute_halt_prob(const std::vector<float>& state) override {// 基于狀態熵的停止概率計算float entropy = 0.0f;for (auto val : state) {float p = sigmoid(val);entropy -= p * log(p + 1e-7f);}return 1.0f / (1.0f + exp(-entropy));}std::vector<float> final_output(const std::vector<float>& state) override {// 輸出動作概率分布return softmax(state);}
};// 動態網絡執行引擎
class ACTEngine {std::vector<std::unique_ptr<PonderingCell>> processing_units;public:void execute(const std::vector<float>& sensor_input) {auto state = sensor_input;// 層級間動態計算for (auto& unit : processing_units) {state = unit->process(state);// 可在此插入跨層狀態傳遞邏輯}output_action(state);}private:void output_action(const std::vector<float>& logits) {// 選擇最優動作(示例實現)int best_idx = 0;float max_val = logits;for (size_t i = 1; i < logits.size(); ++i) {if (logits[i] > max_val) {max_val = logits[i];best_idx = i;}}execute_movement(static_cast<Movement>(best_idx));}
};
動態計算循環
for (int step = 0; step < max_steps; ++step) {// 狀態更新if (should_stop(...)) break; // 自適應終止
}
?概率插值機制
result[i] = remain_p * previous_state[i] + p * current[i];
熵基停止準則
float entropy = ...;
return 1.0f / (1.0f + exp(-entropy));
相關組件列表
CUDA內核加速狀態轉移計算 |
---|
多線程異步執行支持 |
計算步數統計與資源監控模塊 |
基于強化學習的閾值自動調整機制 |
擴展自循環架構至多模態場景,才氣張量網絡包含視覺-語言聯合表征
基于馬里蘭大學多模態循環推理架構的C++核心實現框架,重點展示視覺-語言聯合表征與自適應推理機制
// 多模態聯合編碼空間
class MultimodalLatentSpace {
private:VisionEncoder vision_encoder; // 視覺特征提取器TextEncoder text_encoder; // 語言特征編碼器FusionNetwork fusion_net; // 跨模態融合網絡?:ml-citation{ref="2,7" data="citationList"}public:// 生成聯合才氣孢子表征vector<float> encode_joint(const cv::Mat& image, const string& text) {auto vis_feat = vision_encoder.process(image); // ?:ml-citation{ref="3" data="citationList"}auto txt_feat = text_encoder.encode(text); // ?:ml-citation{ref="2" data="citationList"}// 交叉注意力融合?:ml-citation{ref="1,5" data="citationList"}return fusion_net.fuse(vis_feat, txt_feat); }
};// 自適應循環處理器
class AdaptiveReasoner {vector<RecurrentBlock> blocks; // 循環處理單元?:ml-citation{ref="1,5" data="citationList"}int max_steps = 20;float halt_threshold = 0.95f;// 動態停止條件檢測?:ml-citation{ref="1,3" data="citationList"}bool should_stop(const vector<float>& state, int step) {float uncertainty = calc_entropy(state);return (uncertainty < 0.2f) || (step >= max_steps);}public:// 多步推理過程vector<float> process(const vector<float>& latent_input) {vector<float> state = latent_input;// 動態推理循環?:ml-citation{ref="1,2" data="citationList"}for (int step = 0; step < max_steps; ++step) {// 跨模態狀態更新for (auto& block : blocks) {state = block.transform(state); // ?:ml-citation{ref="5" data="citationList"}}if (should_stop(state, step)) {state = apply_residual(state); // 殘差補償break;}}return state;}
};// 完整推理管線
class VQAPipeline {MultimodalLatentSpace encoder;AdaptiveReasoner reasoner;AnswerDecoder decoder;public:string solve_vqa(const cv::Mat& image, const string& question) {// 生成聯合表征?:ml-citation{ref="2,7" data="citationList"}auto joint_latent = encoder.encode_joint(image, question);// 自適應推理(3-17步)?:ml-citation{ref="1,3" data="citationList"}auto refined_latent = reasoner.process(joint_latent);// 解碼最終答案return decoder.decode(refined_latent);}
};
跨模態融合機制
vector<float> fuse(const vector<float>& vis, const vector<float>& txt) {// 使用門控注意力融合視覺-語言特征?:ml-citation{ref="5,7" data="citationList"}auto attn_weights = cross_attention(vis, txt);return elementwise_mul(vis, attn_weights) + txt;
}
?不確定性感知停止條件
float calc_entropy(const vector<float>& state) {float sum = 0, entropy = 0;for (auto val : state) sum += exp(val);for (auto val : state) {float p = exp(val)/sum;entropy -= p * log(p + 1e-7);}return entropy; // 低熵值觸發提前終止?:ml-citation{ref="1,3" data="citationList"}
}
殘差補償機制
vector<float> apply_residual(const vector<float>& current) {return 0.9f * current + 0.1f * prev_state; // 平滑狀態跳躍?:ml-citation{ref="5" data="citationList"}
}
基于Consciciteation?-Conscicritsis機制架構設計參考
采用稀疏專家混合架構
GLaM稀疏專家混合架構的核心代碼框架,重點展示動態專家選擇與子網絡激活機制:
// 稀疏專家混合層核心實現
class MoELayer {
private:std::vector<ExpertNetwork> experts; // 專家子網絡池?:ml-citation{ref="1" data="citationList"}int num_experts = 64; // 總專家數int active_experts = 2; // 激活專家數(Top2)?:ml-citation{ref="5" data="citationList"}float capacity_factor = 1.2f; // 專家容量系數// 門控網絡實現std::vector<float> compute_gating(const std::vector<float>& input) {auto logits = gate_network(input); // 路由網絡計算?:ml-citation{ref="1,5" data="citationList"}return softmax_topk(logits, active_experts); // Top-K稀疏激活?:ml-citation{ref="1" data="citationList"}}public:// 前向傳播實現稀疏激活std::vector<float> forward(const std::vector<float>& input) {auto gate_output = compute_gating(input);std::vector<float> output(input.size(), 0.0f);// 動態選擇專家并聚合結果?:ml-citation{ref="1,5" data="citationList"}for (int i = 0; i < active_experts; ++i) {int expert_idx = get_topk_index(gate_output, i);auto expert_out = experts[expert_idx].compute(input);// 加權聚合輸出?:ml-citation{ref="5" data="citationList"}float weight = gate_output[expert_idx];for (size_t j = 0; j < output.size(); ++j) {output[j] += weight * expert_out[j];}}return output;}
};// 專家子網絡實現
class ExpertNetwork {LinearLayer fc1{1024, 4096}; // 擴展維度?:ml-citation{ref="1" data="citationList"}LinearLayer fc2{4096, 1024}; // 收縮維度GELU activation;public:std::vector<float> compute(const std::vector<float>& x) {auto h = fc1(x);h = activation(h);return fc2(h);}
};// 動態路由網絡實現
class GateNetwork {LinearLayer routing_layer{1024, 64}; // 輸入到專家數的映射?:ml-citation{ref="5" data="citationList"}public:std::vector<float> operator()(const std::vector<float>& x) {return routing_layer(x); // 輸出各專家激活權重?:ml-citation{ref="1" data="citationList"}}
};
動態路由機制
softmax_topk(logits, active_experts); // 選擇Top2專家?:ml-citation{ref="1,5" data="citationList"}
專家容量控制
capacity_factor = 1.2f; // 防止專家過載?:ml-citation{ref="5" data="citationList"}
參數高效設計
class ExpertNetwork { ... }; // 每個專家獨立參數?:ml-citation{ref="1" data="citationList"}
相關組件列表
專家參數分布式存儲策略? |
---|
動態負載均衡監控模塊? |
混合精度計算支持 (FP16/FP8) |
硬件感知內核優化(CUDA/TPU)? |
神經符號混合架構
神經符號混合架構的核心代碼框架
// 符號邏輯處理模塊
class SymbolicProcessor {
private:std::unordered_map<int, std::string> symbol_dict; // 符號字典?:ml-citation{ref="1,8" data="citationList"}// 表達式樹節點結構struct ExprNode {std::string op;std::vector<ExprNode*> children;float neural_confidence; // 神經網絡的置信度?:ml-citation{ref="8" data="citationList"}};public:// 神經網絡輸出轉符號表達式ExprNode* neural_to_symbolic(const std::vector<float>& nn_output) {ExprNode* root = new ExprNode();root->op = decode_operator(nn_output); // 符號解碼?:ml-citation{ref="1,8" data="citationList"}root->neural_confidence = nn_output.back();// 遞歸構建表達式樹for (int i = 0; i < nn_output.size() - 1; ++i) {if (nn_output[i] > 0.7f) { // 激活閾值判斷?:ml-citation{ref="8" data="citationList"}auto child = generate_subexpr(i);root->children.push_back(child);}}return root;}// 符號推理引擎std::string symbolic_reasoning(ExprNode* root) {while (requires_simplification(root)) { // 符號化簡?:ml-citation{ref="8" data="citationList"}apply_math_rules(root); // 應用數學公理?:ml-citation{ref="1" data="citationList"}}return serialize_expression(root);}
};// 神經編碼模塊
class NeuralEncoder {
private:std::vector<std::vector<float>> weights_ih; // 輸入到隱藏層權重?:ml-citation{ref="1,7" data="citationList"}std::vector<std::vector<float>> weights_ho; // 隱藏到輸出層權重?:ml-citation{ref="1" data="citationList"}// 激活函數float sigmoid(float x) { return 1 / (1 + exp(-x)); // ?:ml-citation{ref="1,8" data="citationList"}}public:// 前向傳播生成符號特征std::vector<float> encode(const std::vector<float>& input) {std::vector<float> hidden(weights_ih.size(), 0.0f);// 輸入層→隱藏層?:ml-citation{ref="1,7" data="citationList"}for (int i = 0; i < weights_ih.size(); ++i) {for (int j = 0; j < input.size(); ++j) {hidden[i] += weights_ih[i][j] * input[j];}hidden[i] = sigmoid(hidden[i]); // ?:ml-citation{ref="8" data="citationList"}}// 隱藏層→輸出層?:ml-citation{ref="1" data="citationList"}std::vector<float> output(weights_ho.size(), 0.0f);for (int i = 0; i < weights_ho.size(); ++i) {for (int j = 0; j < weights_ho[i].size(); ++j) {output[j] += hidden[i] * weights_ho[i][j];}}return output;}
};// 混合架構協調器
class NeuroSymbolicEngine {NeuralEncoder encoder;SymbolicProcessor processor;public:std::string prove_theorem(const std::vector<float>& problem_vec) {// 神經網絡生成符號特征?:ml-citation{ref="8" data="citationList"}auto nn_output = encoder.encode(problem_vec);// 構建符號表達式樹?:ml-citation{ref="1,8" data="citationList"}auto expr_tree = processor.neural_to_symbolic(nn_output);// 符號邏輯推理?:ml-citation{ref="8" data="citationList"}return processor.symbolic_reasoning(expr_tree);}
};
??雙向特征映射機制
ExprNode* neural_to_symbolic(const vector<float>& nn_output) {// 將神經網絡輸出映射為符號表達式樹?:ml-citation{ref="1,8" data="citationList"}
}
??置信度引導推理
struct ExprNode {float neural_confidence; // 神經網絡的置信度?:ml-citation{ref="8" data="citationList"}
};
??規則應用接口
void apply_math_rules(ExprNode* root) {// 應用預定義數學公理進行化簡?:ml-citation{ref="1,8" data="citationList"}
}
?神經編程解釋器
神經編程解釋器(NPI)的核心框架,結合Code as Policies的最新進展,實現從才氣張量網絡到執行策略的端到端生成:
// 策略執行引擎(直接映射到機器人動作)
class PolicyExecutor {
private:std::unordered_map<std::string, std::function<void()>> primitive_actions = {{"move_arm", []{ /* 機械臂控制代碼 */ }},{"gripper_open", []{ /* 夾爪開啟 */ }},{"rotate_joint", []{ /* 關節旋轉 */ }}};public:void execute_policy(const std::vector<std::string>& action_sequence) {for (const auto& action : action_sequence) {if (primitive_actions.count(action)) {primitive_actions?:ml-search[action];} else {handle_composite_action(action); // 復合動作分解?:ml-citation{ref="3" data="citationList"}}}}
};// 神經策略生成器(Code as Policies核心)
class NeuralPolicyGenerator {LSTMController lstm; // 時序建模網絡AttentionModule cross_attn; // 環境狀態注意力?:ml-citation{ref="1,5" data="citationList"}// 從才氣張量網絡生成可執行策略std::vector<std::string> decode_policy(const std::vector<float>& latent_code) {std::vector<std::string> policy;auto hidden_state = lstm.initialize(latent_code);// 自回歸生成動作序列?:ml-citation{ref="1,5" data="citationList"}for (int step = 0; step < MAX_POLICY_STEPS; ++step) {auto env_state = get_environment_snapshot(); // 獲取實時環境狀態?:ml-citation{ref="5" data="citationList"}auto attn_weights = cross_attn(hidden_state, env_state);auto action_probs = compute_action_distribution(attn_weights);std::string action = sample_action(action_probs); // 策略采樣?:ml-citation{ref="1" data="citationList"}if (action == "<END>") break;policy.push_back(action);hidden_state = lstm.update(hidden_state, action);}return policy;}
};// 端到端神經編程解釋器
class NPI_System {NeuralPolicyGenerator generator;PolicyExecutor executor;LatentSpaceMapper latent_mapper; // 才氣張量網絡編碼器?:ml-citation{ref="2" data="citationList"}public:void execute_task(const std::string& task_description) {// 將任務描述映射到才氣張量網絡程序空間?:ml-citation{ref="2" data="citationList"}auto latent_code = latent_mapper.encode(task_description);// 生成無中間代碼的直執行策略?:ml-citation{ref="1,5" data="citationList"}auto policy = generator.decode_policy(latent_code);// 直接執行動作序列executor.execute_policy(policy);}
};
環境感知策略生成
auto env_state = get_environment_snapshot();
auto attn_weights = cross_attn(hidden_state, env_state); // ?:ml-citation{ref="5" data="citationList"}
才氣孢子程序空間壓縮
class LatentSpaceMapper {TransformerEncoder encoder; // 文本到才氣張量網絡編碼?:ml-citation{ref="2" data="citationList"}vector<float> encode(const string& desc) {return encoder.compress(desc); // 128維壓縮表示}
};
?分層動作執行
void handle_composite_action(const string& action) {if (is_meta_action(action)) { // 元動作解析?:ml-citation{ref="3" data="citationList"}expand_meta_action(action); }
}
代碼調研參考文獻表格
Perceiver IO: A General Architecture for Structured Inputs & Outputs | ?DeepMind的Perceiver IO?(2021) |
---|---|
Conditional Adaptive Computation for Efficient Inference | ?Google的CALM?(2022) |
Diffusion-LM: Controllable Text Generation through Diffusion Models | Diffusion-LM?(斯坦福,2022) |
Universal Transformers | mer?(DeepMind,2018) |
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts | ?Microsoft的GLaM?(2022) |
System 1 & System 2 Thinking in Language Models | (愛丁堡大學,2023) |
Aligning Neural Language Models with Brain Activity during Story Processing | 牛津團隊 |