代碼隨想錄第五十一天 | 300.最長遞增子序列 , 674. 最長連續遞增序列 , 718. 最長重復子數組

300.最長遞增子序列

看完想法:在dp遞推公式那里沒有太看得懂。首先dp【i】的狀態肯定是由前面的dp【0】到dp【i-1】推出的,但是dp【0】到dp【i-1】可以推出dp【i】有個前提就是(nums【i】 > nums【0到i-1任意一個】),例如nums【1】 = 2, nums【3】 = 5,那么可以推出dp【3】 = dp【1】 + 1,反之則不行。可是在nums【0】到nums【i-1】可能不止一個小于nums【i】的數而我們又要取從0到i-1最大的那個遞增子序列,所以只能從0到i-1都遍歷一遍然后取最大的一個也就是雙層循環,外面遍歷i里面遍歷0到i-1,所以就可以用j來表示0到i-1的數那么就可以得出遞推公式 if(nums【i】>nums【j】)dp【i】 = max(dp【i】, dp【j】 + 1);

int lengthOfLIS(vector<int>& nums) {//0,1單獨考慮if (nums.size() <= 1) return nums.size();//根據定義,可以只定義到nums.size()vector<int> dp(nums.size(), 1);//設置resizeint result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取長的子序列}return result;

時間復雜度:O(n^2)

?674. 最長連續遞增序列

看完想法:最長遞增和最長連續遞增有很大的區別。最長連續遞增序列是 [1,3,5], 長度為3。盡管 [1,3,5,7] 也是升序的子序列, 但它不是連續的,因為 5 和 7 在原數組里被 4 隔開在遞推公式中展現了這二者的區別,最長連續遞增只需要考慮dp[i] 和dp[i-1],不需要考慮i-1之前的,所以只需要單層for循環

int findLengthOfLCIS(vector<int>& nums) {//0,1單獨考慮if (nums.size() <= 1) return nums.size();//根據定義,可以只定義到nums.size()vector<int> dp(nums.size(), 1);//設置resizeint result = 0;for (int i = 1; i < nums.size(); i++) {int j = i-1;if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);if (dp[i] > result) result = dp[i]; // 取長的子序列}return result;}

時間復雜度:O(n)

718. 最長重復子數組?

看完想法:注意題目中說的子數組,其實就是連續子序列。根據卡哥的想法,dp[i][j]數組的定義是下標為i-1的A和下標為j-1的B的最長重復子序列。如果定義下標為i也可以,就是會在數組初始化的時候比較麻煩,需要自己定義第一行和第一列?。遞推公式:dp[i][j]的狀態只能由dp[i - 1][j - 1]推導出來。即當A[i - 1] 和B[j - 1]相等的時候,dp[i][j] = dp[i - 1][j - 1] + 1;

vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/web/45381.shtml
繁體地址,請注明出處:http://hk.pswp.cn/web/45381.shtml
英文地址,請注明出處:http://en.pswp.cn/web/45381.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

Tomcat下載安裝配置教程(零基礎超詳細)

「作者簡介」&#xff1a;冬奧會網絡安全中國代表隊&#xff0c;CSDN Top100&#xff0c;就職奇安信多年&#xff0c;以實戰工作為基礎著作 《網絡安全自學教程》&#xff0c;適合基礎薄弱的同學系統化的學習網絡安全&#xff0c;用最短的時間掌握最核心的技術。 Tomcat 1、下載…

外包干了1個月,技術明顯退步。。。

有一種打工人的羨慕&#xff0c;叫做“大廠”。 真是年少不知大廠香&#xff0c;錯把青春插稻秧。 但是&#xff0c;在深圳有一群比大廠員工更龐大的群體&#xff0c;他們頂著大廠的“名”&#xff0c;做著大廠的工作&#xff0c;還可以享受大廠的伙食&#xff0c;卻沒有大廠…

【輕松拿捏 】Java-static關鍵字(面試)

Java-static關鍵字 1. 定義和基本概念 回答要點&#xff1a; 示例回答&#xff1a; 2. static 變量 回答要點&#xff1a; 示例回答&#xff1a; 代碼示例&#xff1a; 3. static方法 回答要點&#xff1a; 示例回答&#xff1a; 代碼示例&#xff1a; 4. static 代…

Modbus協議簡介與Python實現

Modbus協議是工業自動化和控制系統中廣泛使用的通信協議。自1979年由Modicon(現為施耐德電氣的一部分)引入以來,它已經成為一種標準的通信協議,用于連接電子設備和傳感器。Modbus協議基于主從架構,支持多種物理層和傳輸模式,如串行通信(RS-232/RS-485)和以太網。 1. Mo…

10個使用Numba CUDA進行編程的例子

以下是10個使用Numba CUDA進行編程的例子&#xff0c;這些例子涵蓋了基本的向量加法、矩陣乘法以及其他一些常見操作&#xff1a; 向量加法 from numba import cuda import numpy as np cuda.jit def vector_add(a, b, c):i cuda.grid(1)if i < len(a):c[i] a[i] b[i] …

STM32智能交通監測系統教程

目錄 引言環境準備智能交通監測系統基礎代碼實現&#xff1a;實現智能交通監測系統 4.1 數據采集模塊 4.2 數據處理與控制模塊 4.3 通信與網絡系統實現 4.4 用戶界面與數據可視化應用場景&#xff1a;交通監測與管理問題解決方案與優化收尾與總結 1. 引言 智能交通監測系統通…

Linux--線程池(包含日志的解釋)

線程系列&#xff1a; Linux–線程的認識(一) Linux–線程的分離、線程庫的地址關系的理解、線程的簡單封裝&#xff08;二&#xff09; 線程的互斥&#xff1a;臨界資源只能在同一時間被一個線程使用 生產消費模型 信號量 線程池 線程池&#xff08;Thread Pool&#xff09;是…

Qt 統計圖編程

學習目標&#xff1a;Qt 折線圖&#xff0c;柱形圖和扇形統計圖編程 學習基礎 Qt QChart 曲線圖表操作-CSDN博客 學習內容 Qt中繪制三種常見的圖表非常方便, 主要步驟如下: 1. 折線圖: - 使用QLineSeries定義折線數據,添加多個坐標點 - 使用QValueAxis創建X軸和Y軸 - 將…

dockerfile配置和yml配置

dockerfile docker build 使用dockerfile自動構建鏡像文件 FROM python:3.9WORKDIR /appCOPY requirements.txt. RUN pip install -r requirements.txtCOPY..CMD ["python", "main.py"]docker build dockerifle自動構建拉取python3.9鏡像&#xff0c;并執…

拷貝文件的一些操作

利用fputc 、fgetc實現文件的拷貝 int main(int argc, const char *argv[]) {FILE* rfpfopen(argv[1],"r");FILE* wfpfopen(argv[2],"w");if(rfpNULL || wfpNULL){perror("fopen");return 1;}while(1){char resfgetc(rfp);if(feof(rfp)1){break;…

PointCloudLib LocalMaximum_DeleteMaxPoint C++版本

測試效果 簡介 在點云庫&#xff08;Point Cloud Library&#xff0c;PCL&#xff09;中&#xff0c;處理點云數據時&#xff0c;經常需要去除局部最大點&#xff08;Local Maximum&#xff09;&#xff0c;這通常用于去除噪聲、提取特定形狀的特征或者簡化點云數據。局部最大…

[米聯客-安路飛龍DR1-FPSOC] FPGA基礎篇連載-14 SPI MASET發送程序設計

軟件版本&#xff1a;Anlogic -TD5.9.1-DR1_ES1.1 操作系統&#xff1a;WIN10 64bit 硬件平臺&#xff1a;適用安路(Anlogic)FPGA 實驗平臺&#xff1a;米聯客-MLK-L1-CZ06-DR1M90G開發板 板卡獲取平臺&#xff1a;https://milianke.tmall.com/ 登錄“米聯客”FPGA社區 ht…

數據庫管理-第220期 Oracle的高可用-03(20240715)

數據庫管理220期 2024-07-15 數據庫管理-第220期 Oracle的高可用-03&#xff08;20240715&#xff09;1 AC/TAC2 配置Service3 用戶權限4 端口開放總結 數據庫管理-第220期 Oracle的高可用-03&#xff08;20240715&#xff09; 作者&#xff1a;胖頭魚的魚缸&#xff08;尹海文…

Modbus - 筆記

1 Modbus Poll/Slave 模擬器使用教程 Modbus Poll/Slave 模擬器使用教程_modbus poll 使用教程-CSDN博客 https://item.jd.com/67488830087.html

Node.js 爬蟲開發實戰:構建一個高效、優雅的網絡數據抓取器

在大數據時代&#xff0c;從網頁上自動抓取數據的需求日益增長。Node.js&#xff0c;以其異步非阻塞I/O模型&#xff0c;成為了構建高性能網絡爬蟲的理想選擇。本文將引導你如何使用Node.js&#xff0c;結合axios和cheerio兩個流行庫&#xff0c;創建一個能夠從目標網站抓取信息…

51單片機10(蜂鳴器介紹)

一、蜂鳴器介紹&#xff1a; 1、蜂鳴器是一種一體化結構的電子訊響器&#xff0c;采用直流電壓供電&#xff0c;廣泛應用于電子產品中作為發聲器件。蜂鳴器主要分為壓電式蜂鳴器和電磁式蜂鳴器。 &#xff08;1&#xff09;壓電式蜂鳴器&#xff0c;它主要由多諧的一個增脹器…

【學習筆記】無人機(UAV)在3GPP系統中的增強支持(八)-通過無人機進行無線接入

引言 本文是3GPP TR 22.829 V17.1.0技術報告&#xff0c;專注于無人機&#xff08;UAV&#xff09;在3GPP系統中的增強支持。文章提出了多個無人機應用場景&#xff0c;分析了相應的能力要求&#xff0c;并建議了新的服務級別要求和關鍵性能指標&#xff08;KPIs&#xff09;。…

電腦出現錯誤——找不到msvcp140.dll無法繼續執行代碼,有效解決錯誤dll文件

msvcp140.dll是一個屬于 Microsoft Visual C Redistributable for Visual Studio 2015 的 DLL 文件。這個文件是許多Windows應用程序&#xff08;尤其是使用 C 開發的程序&#xff09;所必需的&#xff0c;因為它包含了標準 C 庫的函數實現&#xff0c;用于處理數學運算、數據轉…

【React Hooks原理 - useRef】

概述 在Function Component項目中當我們需要操作dom的時候&#xff0c;第一時間想到的就是使用useRef這個Hook來綁定dom。但是這個僅僅是使用這個Hook而已&#xff0c;為了更好的學習React Hooks內部實現原理&#xff0c;知其所以然。所以本文根據源碼從useRef的基礎使用場景一…

使用shell腳本打印99乘法表

一、簡介 前一段時間在舊電腦上安裝 antiX 23.1 操作系統&#xff0c;遇到一些問題需要使用shell腳本解決問題&#xff0c;所以專門學習了幾天&#xff0c;打印99乘法表是其中的一個練習作業。 二、學習Linux可行的幾種方式 虛擬機安裝Linux進行學習直接雙系統安裝在實體電腦…