參考文獻:Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm
首先是文章2.3節中 t-product 的定義:
塊循環矩陣:
參考知乎博主的例子及代碼:(t-product與t-QR分解,另一篇傅里葉對角化也很值得學習)
% A=zeros([3,2,2]);
% B=zeros([2,1,2]);
%
% A(:,:,1)=[1 0;0 2;-1 3];
% A(:,:,2)=[-2 1;-2 7;0 -1];
%
% B(:,:,1)=[3;-1];
% B(:,:,2)=[-2;-3];A=rand(3,2,5);
B=rand(2,1,5);C=t_product(A,B)function C=t_product(A,B)% @author:slandarer% 獲取張量大小[l,p,n]=size(A);dimA=[l,p,n];[p,m,n]=size(B);dimB=[p,m,n];dimC=[l,m,n];% 對A,B進行unfold展開操作ufold_A=reshape(permute(A,[2,1,3]),dimA(2),[])';ufold_B=reshape(permute(B,[2,1,3]),dimB(2),[])';% 對A構建循環矩陣bcirc_A=zeros([l*n,p*n]);for i=1:nbcirc_A(:,(1:p)+(i-1)*p)=circshift(ufold_A,l*(i-1),1);end% bcirc(A)·unfold(B)AB=bcirc_A*ufold_B;% 還原張量維度C=ipermute(reshape(AB',dimC([2,1,3])),[2,1,3]);CC = fft(C, [], 3) % 觀察,張量C后n3-1個切片呈共軛對稱
end