手推OpenGL相機的正交投影矩陣和透視投影矩陣(附源碼)

概述

計算OpenGL的正交投影矩陣和透視投影矩陣是有現成函數的。自己手推不是為了重復造輪子。手推一遍,可以極大的加強對這兩個矩陣的理解。同時也可以滿足一下自己求知欲。

正交投影矩陣手推

正交投影矩陣源碼

WGMatrix4x4 WGMatrix4x4::BuildOrtho(double l, double r, double b, double t, double n, double f) {WGMatrix4x4 matrix;double w = r - l;double h = t - b;double d = f - n;matrix.m_elements[0][0] = 2 / w;matrix.m_elements[0][1] = 0;matrix.m_elements[0][2] = 0;matrix.m_elements[0][3] = -(r + l) / w;matrix.m_elements[1][0] = 0;matrix.m_elements[1][1] = 2 / h;matrix.m_elements[1][2] = 0;matrix.m_elements[1][3] = -(t + b) / h;matrix.m_elements[2][0] = 0;matrix.m_elements[2][1] = 0;matrix.m_elements[2][2] = -2 / d;matrix.m_elements[2][3] = -(f + n) / d;matrix.m_elements[3][0] = 0;matrix.m_elements[3][1] = 0;matrix.m_elements[3][2] = 0;matrix.m_elements[3][3] = 1;matrix.m_type = WGMatrix4x4Type::TRS;return matrix;
}

透視投影矩陣手推

透視投影矩陣源碼

WGMatrix4x4 WGMatrix4x4::BuildFrustum(double l, double r, double b, double t, double n, double f) {WGMatrix4x4 matrix;double w = r - l;double h = t - b;double d = f - n;matrix.m_elements[0][0] = 2 * n / w;matrix.m_elements[0][1] = 0;matrix.m_elements[0][2] = (r + l) / w;matrix.m_elements[0][3] = 0;matrix.m_elements[1][0] = 0;matrix.m_elements[1][1] = 2 * n / h;matrix.m_elements[1][2] = (t + b) / h;matrix.m_elements[1][3] = 0;matrix.m_elements[2][0] = 0;matrix.m_elements[2][1] = 0;matrix.m_elements[2][2] = -(f + n) / d;matrix.m_elements[2][3] = -2 * f * n / d;matrix.m_elements[3][0] = 0;matrix.m_elements[3][1] = 0;matrix.m_elements[3][2] = -1;matrix.m_elements[3][3] = 0;matrix.m_type = WGMatrix4x4Type::Unknown;return matrix;
}

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/915475.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/915475.shtml
英文地址,請注明出處:http://en.pswp.cn/news/915475.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

【跨國數倉遷移最佳實踐2】MaxCompute SQL執行引擎對復雜類型處理全面重構,保障客戶從BigQuery平滑遷移

本系列文章將圍繞東南亞頭部科技集團的真實遷移歷程展開,逐步拆解 BigQuery 遷移至 MaxCompute 過程中的關鍵挑戰與技術創新。本篇為第二篇,跨國數倉遷移背后 MaxCompute 的統一存儲格式創新。 注:客戶背景為東南亞頭部科技集團,…

react(基礎篇)

React由Meta公司研發,用于構建Web和原生交互界面的庫。 React 官方中文文檔 查看JSX (一)React組件 用戶界面的一部分,通俗的來講,最小的元素組成的單元,可以實現部分邏輯與功能 房子的門就可以看成一個…

數據結構-哈希表(一)哈希函數、哈希表介紹、優缺點

哈希表 哈希函數哈希表使用了哈希函數來完成key到地址的快速映射,所以在了解哈希表之前,需要先明白哈希函數的概念和特點。 哈希函數的定義 哈希函數 哈希函數是一種將任意長度輸入的數據,轉換成固定長度輸出的算法哈希函數H可以表示為yH(x) …

Shader開發(一)什么是渲染

前言在現代游戲開發和計算機圖形學領域,渲染技術是連接虛擬世界與視覺呈現的關鍵橋梁。無論你是剛接觸圖形編程的新手,還是希望深入理解渲染原理的開發者,掌握渲染的核心概念都是必不可少的第一步。什么是渲染?渲染(Re…

策略模式+工廠模式(案例實踐易懂版)

最近,可以說這2025年度,自己更文的次數都大大減少,主要最近大環境不景氣,自己職業也受到波及,學習的東西也是因為AI而變得更多, 沒辦法,你不學,總有人會學,關于AI的我也準備出個專輯,相信絕對幫助到大家 額,好像說多了,言歸正傳,我們看一下今天的主題:策略模式工廠模式 本文主要…

【NLP輿情分析】基于python微博輿情分析可視化系統(flask+pandas+echarts) 視頻教程 - snowNLP庫實現中文情感分析

大家好,我是java1234_小鋒老師,最近寫了一套【NLP輿情分析】基于python微博輿情分析可視化系統(flaskpandasecharts)視頻教程,持續更新中,計劃月底更新完,感謝支持。今天講解snowNLP庫實現中文情感分析 視頻在線地址&…

大根堆,小根堆,雙指針

碼蹄集OJ-大約 #include<bits/stdc.h> using namespace std; priority_queue<int>max2,maxDel; priority_queue<int,vector<int>,std::greater<int>>min2,minDel; const int N1e51; int n,result0,a[N]; int main( ) {cin>>n;for(int i1…

RS485和Modbus

UART協議中&#xff0c;空閑狀態為高電平&#xff0c;也就是1,R25和R27&#xff0c;485收發器特性MAX485 (美信)SSP485 (國產替代)AZRS3080 (安格)供電電壓5V5V3.3V ~ 5.5V靜態電流300μA (接收模式)120μA (接收模式)150μA (接收模式)傳輸速率2.5Mbps10Mbps20Mbps總線負載能力…

【Android】交叉編譯faiss庫 | 問題解決

目錄 一 解決 FAISS 交叉編譯到 Android 時的 BLAS/MKL 依賴問題 二 交叉編譯faiss ■禁用 BLAS并交叉編譯faiss ■使用 OpenBLAS 的 Android 移植版本并交叉編譯faiss 三 報錯處理 ■報錯 ■SWIG 一 解決 FAISS 交叉編譯到 Android 時的 BLAS/MKL 依賴問題

《使用 IDEA 部署 Docker 應用指南》

使用 IDEA 部署 Docker 應用的詳細步驟 一、創建 Dockerfile 配置文件 在項目根目錄下創建Dockerfile文件&#xff0c;配置內容如下&#xff1a; # 使用官方的OpenJDK鏡像作為基礎鏡像 FROM openjdk:17-jdk-slim# 設置維護者信息(可選) LABEL maintainer"三木豪"# 設…

【Docker#3】Window 和 Linux 上 docker安裝 相關知識

前置了解&#xff1a; X86 高并發&#xff1a;基于 x86 架構的處理器&#xff0c;在高負載下處理大量并發請求的能力。ARM &#xff1a;使用 ARM 架構處理器的移動設備&#xff0c;具有低功耗和高性能的特點。 操作系統&#xff1a; CentOS&#xff1a;基于 Red Hat Enterprise…

一次 POI 版本升級踩坑記錄

前言 結論先行。 開發過程中由于可能涉及到二次開發&#xff0c;若原系統開發時間久遠&#xff0c;沒有達成一致規范設計&#xff0c;導致風格各異&#xff0c;確實滿足當時開發場景&#xff0c;但增大了后續的更新的難度&#xff0c;容易出現俄羅斯套娃現象&#xff0c;新的更…

硬件設計學習DAY13——電源緩沖電路設計全解

每日更新教程&#xff0c;評論區答疑解惑&#xff0c;小白也能變大神&#xff01;" 目錄 一.緩沖電路介紹 1.1緩沖電路的作用 1.2寄生參數的來源 1.3緩沖電路的類型 1.4常見緩沖電路設計 1.5設計原則 二.吸收與緩沖 2.1吸收與緩沖的核心作用 2.2電壓尖峰與吸收措…

鴻蒙搜狐新聞如何在Native調用ArkTS方法

01前言鴻蒙作為一款新興的智能操作系統&#xff0c;現在適配鴻蒙系統的應用越來越多&#xff0c;同時會面臨三端兼容問題&#xff0c;如同一產品功能&#xff0c;需要維護iOS、Android、鴻蒙三端代碼。拿文件上傳、下載功能場景舉例&#xff0c;同時要適配iOS、Android、鴻蒙三…

Java行為型模式---中介者模式

中介者模式基礎概念中介者模式&#xff08;Mediator Pattern&#xff09;是一種行為型設計模式&#xff0c;其核心思想是通過一個中介對象來封裝一系列對象之間的交互&#xff0c;使各對象不需要顯式地相互引用&#xff0c;從而降低耦合度&#xff0c;并可以獨立地改變它們之間…

Python爬蟲實戰:研究Korean庫相關技術

一、引言 1.1 研究背景與意義 隨著韓流文化在全球的傳播,韓語網頁內容急劇增加。韓國在科技、娛樂等領域的信息具有重要研究價值。然而,韓語獨特的黏著語特性(如助詞體系、詞尾變化)給信息處理帶來挑戰。傳統爬蟲缺乏對韓語語言特點的針對性處理,本研究旨在開發一套完整…

表單校驗--數組各項獨立校驗

寫需求時遇到一個這樣的問題&#xff0c;就是校樣項是多個的&#xff0c;但是其字段名稱相同這時我們可以這樣校驗&#xff0c;注意字段之間的關聯性<div v-for"(item,index) in formData.hospitalDoctorList" :key"item.key || index"><el-form-…

基于SpringBoot和leaflet-timeline-slider的歷史敘事GIS展示-以哪吒2的海外國家上映安排為例

目錄 前言 一、哪吒2的海外之路 1、海外征戰歷程 2、上映國家空間查詢 二、后端接口的實現 1、模型層的實現 2、上映時間與國家 3、控制層的實現 三、基于leaflet-timeline-slider的前端實現 1、時間軸控件的引入及定義 2、時間軸綁定事件 3、成果展示 四、總結 前言…

tar 解壓:Cannot change ownership to uid 1000, gid 1000: Operation not permitted

tar 解壓 tar.gz 壓縮包報錯&#xff1a; # tar xzf $INPUT_FOLDER/archive.tar.gz -C /mnt/test-nas/[..] tar: xx.jpg: Cannot change ownership to uid 1000, gid 1000: Operation not permitted原因是用普通用戶執行的解壓縮腳本&#xff0c;用root用戶執行tar解壓縮&…

騰訊客戶端開發面試真題分析

以下是針對騰訊客戶端開發工程師面試問題的分類與高頻問題分析&#xff08;基于??105道問題&#xff0c;總出現次數118次??&#xff09;。按技術領域整合為??7大類別??&#xff0c;按占比排序并精選高頻問題標注優先級&#xff08;1-5&#x1f31f;&#xff09;&#x…