前言
本文章主要介紹如何快速使用MASR語音識別框架訓練和推理,本文將致力于最簡單的方式去介紹使用,如果使用更進階功能,還需要從源碼去看文檔。僅需三行代碼即可實現訓練和推理。
源碼地址:https://github.com/yeyupiaoling/MASR
安裝環境
使用Anaconda,并創建了Python3.11的虛擬環境。
- 首先安裝的是Pytorch 2.5.1 的GPU版本,如果已經安裝過了,請跳過。
conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=11.8 -c pytorch -c nvidia
- 使用pip安裝MASR庫,命令如下:
python -m pip install masr -U -i https://pypi.tuna.tsinghua.edu.cn/simple
準備數據集
執行下面代碼即可自動完成下載數據,和制作數據列表。默認下載可能會比較慢,可以復制下載地址用迅雷等工具下載,并指定filepath
為下載好的文件路徑,可以快速完成制作數據列表。
import argparse
import os
import functools
from utility import download, unpack
from utility import add_arguments, print_argumentsDATA_URL = 'https://openslr.trmal.net/resources/33/data_aishell.tgz'
MD5_DATA = '2f494334227864a8a8fec932999db9d8'parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("target_dir", default="dataset/audio/", type=str, help="存放音頻文件的目錄")
add_arg("annotation_text", default="dataset/annotation/", type=str, help="存放音頻標注文件的目錄")
add_arg("filepath", default=None, type=str, help="提前下載好的數據集壓縮文件")
args = parser.parse_args()def create_annotation_text(data_dir, annotation_path):print('Create Aishell annotation text ...')if not os.path.exists(annotation_path):os.makedirs(annotation_path)f_train = open(os.path.join(annotation_path, 'aishell.txt'), 'w', encoding='utf-8')if not os.path.exists(os.path.join(annotation_path, 'test.txt')):f_test = open(os.path.join(annotation_path, 'test.txt'), 'w', encoding='utf-8')else:f_test = open(os.path.join(annotation_path, 'test.txt'), 'a', encoding='utf-8')transcript_path = os.path.join(data_dir, 'transcript', 'aishell_transcript_v0.8.txt')transcript_dict = {}for line in open(transcript_path, 'r', encoding='utf-8'):line = line.strip()if line == '': continueaudio_id, text = line.split(' ', 1)# remove spacetext = ''.join(text.split())transcript_dict[audio_id] = textdata_types = ['train', 'dev']for type in data_types:audio_dir = os.path.join(data_dir, 'wav', type)for subfolder, _, filelist in sorted(os.walk(audio_dir)):for fname in filelist:audio_path = os.path.join(subfolder, fname).replace('\\', '/')audio_id = fname[:-4]# if no transcription for audio then skippedif audio_id not in transcript_dict:continuetext = transcript_dict[audio_id]f_train.write(audio_path.replace('../', '') + '\t' + text + '\n')audio_dir = os.path.join(data_dir, 'wav', 'test')for subfolder, _, filelist in sorted(os.walk(audio_dir)):for fname in filelist:audio_path = os.path.join(subfolder, fname).replace('\\', '/')audio_id = fname[:-4]# if no transcription for audio then skippedif audio_id not in transcript_dict:continuetext = transcript_dict[audio_id]f_test.write(audio_path.replace('../', '') + '\t' + text + '\n')f_test.close()f_train.close()def prepare_dataset(url, md5sum, target_dir, annotation_path):"""Download, unpack and create manifest file."""data_dir = os.path.join(target_dir, 'data_aishell')if not os.path.exists(data_dir):if args.filepath is None:filepath = download(url, md5sum, target_dir)else:filepath = args.filepathunpack(filepath, target_dir)# unpack all audio tar filesaudio_dir = os.path.join(data_dir, 'wav')for subfolder, _, filelist in sorted(os.walk(audio_dir)):for ftar in filelist:unpack(os.path.join(subfolder, ftar), subfolder, True)os.remove(filepath)else:print("Skip downloading and unpacking. Aishell data already exists in %s." % target_dir)create_annotation_text(data_dir, annotation_path)def main():print_arguments(args)if args.target_dir.startswith('~'):args.target_dir = os.path.expanduser(args.target_dir)prepare_dataset(url=DATA_URL,md5sum=MD5_DATA,target_dir=args.target_dir,annotation_path=args.annotation_text)if __name__ == '__main__':main()
訓練
使用MASR框架訓練非常簡單,核心代碼就3行,如下,configs
參數可以指定使用的默認配置文件。
from masr.trainer import MASRTrainertrainer = MASRTrainer(configs="conformer", use_gpu=True)trainer.train(save_model_path="models/")
輸出類似如下:
2025-03-08 11:04:57.884 | INFO | masr.optimizer:build_optimizer:16 - 成功創建優化方法:Adam,參數為:{'lr': 0.001, 'weight_decay': 1e-06}
2025-03-08 11:04:57.884 | INFO | masr.optimizer:build_lr_scheduler:31 - 成功創建學習率衰減:WarmupLR,參數為:{'warmup_steps': 25000, 'min_lr': 1e-05}
2025-03-08 11:04:57.885 | INFO | masr.trainer:train:541 - 詞匯表大小:5561
2025-03-08 11:04:57.885 | INFO | masr.trainer:train:542 - 訓練數據:13382
2025-03-08 11:04:57.885 | INFO | masr.trainer:train:543 - 評估數據:27
2025-03-08 11:04:58.642 | INFO | masr.trainer:__train_epoch:414 - Train epoch: [1/200], batch: [0/836], loss: 51.60880, learning_rate: 0.00000008, reader_cost: 0.1062, batch_cost: 0.6486, ips: 21.1991 speech/sec, eta: 1 day, 11:03:13
導出模型
訓練完成之后還需要導出模型才能進行推理,導出模型也非常簡單。需要三行代碼,如下:
from masr.trainer import MASRTrainer# 獲取訓練器
trainer = MASRTrainer(configs="conformer", use_gpu=True)# 導出預測模型
trainer.export(save_model_path='models/',resume_model='models/ConformerModel_fbank/best_model/')
推理
推理也相當簡單,只需要下面三行代碼即可完成語音識別。
from masr.predict import MASRPredictorpredictor = MASRPredictor(model_dir="models/ConformerModel_fbank/inference_model/", use_gpu=True)audio_path = "dataset/test.wav"
result = predictor.predict(audio_data=audio_path)
print(f"識別結果: {result}")
輸出如下:
2025-03-08 11:21:52.100 | INFO | masr.infer_utils.inference_predictor:__init__:38 - 已加載模型:models/ConformerModel_fbank/inference_model/inference.pth
2025-03-08 11:21:52.147 | INFO | masr.predict:__init__:117 - 流式VAD模型已加載完成
2025-03-08 11:21:52.147 | INFO | masr.predict:__init__:119 - 開始預熱預測器...
2025-03-08 11:22:01.366 | INFO | masr.predict:reset_predictor:471 - 重置預測器
2025-03-08 11:22:01.366 | INFO | masr.predict:__init__:128 - 預測器已準備完成!
識別結果: {'text': '近幾年不但我用書給女兒壓歲也勸說親朋不要給女兒壓歲錢而改送壓歲書', 'sentences': [{'text': '近幾年不但我用書給女兒壓歲也勸說親朋不要給女兒壓歲錢而改送壓歲書', 'start': 0, 'end': 8.39}]}
結語
該框架支持多個語音識別模型,包含deepspeech2
、conformer
、squeezeformer
、efficient_conformer
等,每個模型都支持流式識別和非流式識別,以及多種解碼器,包含ctc_greedy_search
、ctc_prefix_beam_search
、attention_rescoring
、ctc_beam_search
等。更多功能等你發現。