
2019.12.05 caffe(gpu)安裝
參考網址:
教程1:
weiliu89/caffe?github.com
教程2:
https://blog.csdn.net/yggaoeecs/article/details/79163789?blog.csdn.net環境:Ubuntu16.04+cuda10.0
安裝過程:
git clone https://github.com/weiliu89/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
make -j8
之后報錯:

打開并修改配置文件Makefile.config,按照教程2 https://blog.csdn.net/yggaoeecs/article/details/79163789
接著報錯:

解決方法是在Makefile.config中添加#include<cudnn.h> 或者 #USE_CUDNN := 1
0.0是我剛剛改錯了,我以為自己用到cudnn,去掉了這行的注釋
再次make,報錯如下:

解決參考:
https://blog.csdn.net/u013524303/article/details/81609643
nvcc fatal : Unknown option ‘fPIC’
nvcc本身不支持-fPIC編譯參數,但是卻提供了-Xcompiler用途上,使用nvcc -h可以發現,這是提供了向低級編譯工具(gcc)傳遞編譯參數的功能,因此在編譯.cu文件時,在nvcc后加上 -shared -Xcomplier -fPIC 即可鏈接。
我遇到的錯誤是參考的博客中,在添加
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
-Xcompiler之前少了一個空格
修改之后, make clean,再次make

這個注釋掉Makefile.config中的這一行就可以了,如下:
CUDA_ARCH := #-gencode arch=compute_20,code=sm_20
之后報錯如下:

參考解決:https://github.com/BVLC/caffe/issues/1761
在caffe文件夾下:
protoc src/caffe/proto/caffe.proto --cpp_out=.
mkdir include/caffe/proto
mv src/caffe/proto/caffe.pb.h include/caffe/proto
之后運行,報錯如下:

之后參考網上解決方案:
make clean
cd caffe
mkdir build
cd build
cmake ..
make all -j8
顯示安裝成功:

接著make runtest,測試成功:

之后按照教程2進行MNIST數據集測試,顯示可以成功訓練

之后在Ubuntu環境下,打開python解釋程序,輸入import caffe時,出現如下錯誤:

解決參考:
https://blog.csdn.net/u010417185/article/details/53559107?blog.csdn.net最終可以把caffe中的python導入到解釋器中。
附注:
1.問題解決,配置tensorflow-gpu1.15.0卻不能調用gpu?的情況:
安裝教程參考:
干貨|TensorFlow開發環境搭建(Ubuntu16.04+GPU+TensorFlow源碼編譯)?mp.weixin.qq.com
主要解決方法如下:
vim ~/.bashrc
在最后:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64:/usr/local/cuda-10.0/extras/CUPTI/lib"
export CUDA_HOME=/usr/local/cuda-10.0
之后 source ~/.bashrc
就可以成功調用gpu
安裝步驟(簡版):
Example environment setup for training can be created with Miniconda:
1.wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc
2.For CPU usage:
conda create -n tfcpu
conda activate tfcpu
pip install tensorflow==1.15.0 tqdm
3.For GPU usage:
conda create -n tensorflow_gpu python=3.6
conda activate tensorflow_gpu
pip install tensorflow-gpu==1.15.0 tqdm
2.cmake安裝新版本

Solution:
- Check your current version with cmake --version
- Uninstall it with sudo apt remove cmake(or)
- Visit https://cmake.org/download/ and download the latest binaries
- In my case cmake-3.6.2-Linux-x86_64.sh is sufficient copy the binary to /opt/
4. chmod +x /opt/cmake-3.*your_version*.sh (chmod makes the script executable)
5. sudo bash /opt/cmake-3.*your_version.sh* (you'll need to press y twice)
The script installs to /opt/cmake-3.*your_version* so in order to get the cmake command, make a symbolic link:
6. sudo ln -s /opt/cmake-3.*your_version*/bin/* /usr/local/bin
Test your results with cmake --version