原標題:機器學習領域各領域必讀經典綜述論文整理分享
機器學習是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。
機器學習及其相關領域,如深度學習、自然語言處理、計算機視覺、推薦系統、強化學習等領域最近幾年非常火,每年各式各樣的國際頂會,投稿數每年都會海量增加。要持續Follow這些領域最新的技術,刷遍各大會議最新會議非常費時費力,特別是對于剛入門的同學。因此,為了方便同學們了解機器學習、AI各領域的最新的技術全貌,本資源整理了各領域必讀的經典綜述論文,分享給大家。
資源整理自網絡,源地址:https://github.com/eugeneyan/ml-surveys
目錄
推薦系統
?Algorithms: Recommender systems survey
?Algorithms: Deep Learning based Recommender System: A Survey and New Perspectives
?Algorithms: Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches
?Serendipity: A Survey of Serendipity in Recommender Systems
?Diversity: Diversity in Recommender Systems – A survey
?Explanations: A Survey of Explanations in Recommender Systems
深度學習
?Architecture: A State-of-the-Art Survey on Deep Learning Theory and Architectures
?Knowledge distillation: Knowledge Distillation: A Survey
?Model compression: Compression of Deep Learning Models for Text: A Survey
?Transfer learning: A Survey on Deep Transfer Learning
?Neural architecture search: A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions
?Neural architecture search: Neural Architecture Search: A Survey
自然語言處理
?Deep Learning: Recent Trends in Deep Learning Based Natural Language Processing
?Classification: Deep Learning Based Text Classification: A Comprehensive Review
?Generation: Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation
?Generation: Neural Language Generation: Formulation, Methods, and Evaluation
?Transfer learning: Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer (Paper)
?Metrics: Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
?Metrics: Evaluation of Text Generation: A Survey
計算機視覺
?Object detection: Object Detection in 20 Years
?Adversarial attacks: Threat of Adversarial Attacks on Deep Learning in Computer Vision
?Autonomous vehicles: Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art
深度強化學習
?Algorithms: A Brief Survey of Deep Reinforcement Learning
?Transfer learning: Transfer Learning for Reinforcement Learning Domains
?Economics: Review of Deep Reinforcement Learning Methods and Applications in Economics
向量化技術
?Graph: A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications
?Text: From Word to Sense Embeddings:A Survey on Vector Representations of Meaning
?Text: Diachronic Word Embeddings and Semantic Shifts
?Text: Word Embeddings: A Survey
Meta-learning and Few-shot Learning
?NLP: Meta-learning for Few-shot Natural Language Processing: A Survey
?Domain Agnostic: Learning from Few Samples: A Survey
?NN: Meta-Learning in Neural Networks: A Survey
?Domain Agnostic: A Comprehensive Overview and Survey of Recent Advances in Meta-Learning
?Domain Agnostic: Baby steps towards few-shot learning with multiple semantics
?Domain Agnostic: Meta-Learning: A Survey
?Domain Agnostic: A Perspective View And Survey Of Meta-learning
遷移學習
?Transfer learning: A Survey on Transfer Learning
免責申明:本站所有內容均來自網絡,我們對文中觀點保持中立,對所包含內容的準確性,可靠性或者完整性不提供任何明示或暗示的保證,請僅作參考。若有侵權,請聯系刪除。
文章來源:深度學習與NLP返回搜狐,查看更多
責任編輯: