隨機變量函數變換
本文介紹一維隨機變量函數變換,參考文獻:https://wenku.baidu.com/view/619f74ac3186bceb19e8bbd0.html
變換TTT作用于隨機變量XXX,產生隨機變量YYY.
T:X?>Y或者寫為y=T(x)T:X->Y 或者寫為 y=T(x)T:X?>Y或者寫為y=T(x)
如果X與YX與YX與Y之間的關系是單調的,并且存在逆映射:
T?1:Y?>X或者寫為x=T?1(y)T^{-1}:Y->X 或者寫為 x=T^{-1}(y)T?1:Y?>X或者寫為x=T?1(y)
利用X的概率密度fX(x)f_X(x)fX?(x)求Y的概率密度fY(y)f_Y(y)fY?(y)
PY(y)=P[Y≤y]=P[T(X)≤y]=P[X≤T?1(y)]=∫?∞T?1(y)fX(x)dxP_Y(y)=P[Y\le y]=P[T(X)\le y]=P[X\le T^{-1}(y)]=\int_{-\infty}^{T^{-1}(y)}f_X(x)dxPY?(y)=P[Y≤y]=P[T(X)≤y]=P[X≤T?1(y)]=∫?∞T?1(y)?fX?(x)dx
上式兩邊對yyy求導(變上限函數求導+復合函數求導):
dPY(y)dy=fX(T?1(y))dT?1(y)dy\frac{dP_Y(y)}{dy}=f_X(T^{-1}(y))\frac{dT^{-1}(y)}{dy}dydPY?(y)?=fX?(T?1(y))dydT?1(y)?
因為x=T?1(y)x=T^{-1}(y)x=T?1(y),所以上式可以改寫為:
dPY(y)dy=fX(T?1(y))dxdy\frac{dP_Y(y)}{dy}=f_X(T^{-1}(y))\frac{dx}{dy}dydPY?(y)?=fX?(T?1(y))dydx?
又因為y=T(x)y=T(x)y=T(x)對xxx求導:dydx=T(x)′\frac{dy}{dx}=T(x)'dxdy?=T(x)′,所以反函數的導數:(T?1)′=dxdy=1T(x)′(T^{-1})'=\frac{dx}{dy}=\frac{1}{T(x)'}(T?1)′=dydx?=T(x)′1?
綜上:
fY(y)=dPY(y)dy=fX(T?1(y))1T(x)′f_Y(y)=\frac{dP_Y(y)}{dy}=f_X(T^{-1}(y))\frac{1}{T(x)'}fY?(y)=dydPY?(y)?=fX?(T?1(y))T(x)′1?