數據圖表可視化_數據可視化十大最有用的圖表

數據圖表可視化

分析師每天使用的最佳數據可視化圖表列表。 (List of best data visualization charts that Analysts use on a daily basis.)

Presenting information or data in a visual format is one of the most effective ways. Researchers have proved that the human brain is more acceptable in processing visual information compared to raw or tabular data.

以視覺格式顯示信息或數據是最有效的方法之一。 研究人員已經證明,與原始或表格數據相比,人腦在處理視覺信息方面更容易接受。

when analysts process data in charts or in graphs, selection of the right chart or graph according to data is one the prime important task. The wrong selection of chart may lead to misinterpretation where the correct selection enhances the business values and beautify your presentation.

當分析師處理圖表或圖形中的數據時,根據數據選擇正確的圖表或圖形是最重要的任務之一。 錯誤選擇圖表可能導致誤解,正確選擇圖表會增強業務價值并美化您的演示文稿。

There are more than 150 charts available in data visualization. But you will use all of them very less likely. Here is the list of the top 10 most useful charts in data visualization.

數據可視化中有150多種圖表可用。 但是您將很少使用它們。 以下是數據可視化中最有用的十大圖表的列表。

  1. Scatterplot

    散點圖
  2. Line chart

    折線圖
  3. Column Chart

    柱形圖
  4. Bar Chart

    條形圖
  5. Area Chart

    面積圖
  6. Bubble Chart

    氣泡圖
  7. Pie Chart

    餅形圖
  8. Waffle Chart or Square Pie Chart

    華夫餅圖或方形餅圖
  9. Stack Vertical and Horizontal Charts

    堆疊垂直和水平圖
  10. Mosaic Plot

    馬賽克圖

1.散點圖 (1. Scatterplot)

This is a very useful chart when you want to show the relationship between two continuous variables. For example, if you want to visualize the relationship between the Price of the house and Area, then you should this chart. By Visualizing this scatterplot we can answer the following question.

當您想顯示兩個連續變量之間的關系時,這是一個非常有用的圖表。 例如,如果要可視化房屋價格和區域之間的關系,則應使用此圖表。 通過可視化此散點圖,我們可以回答以下問題。

a. Whether the relationship between two variable exists or not?

一個。 兩個變量之間的關系是否存在?

b. Is there a positive relationship or a negative relationship exhibit between two variables?

b。 兩個變量之間存在正相關還是負相關?

c. What is the degree of relationship between two variables?

C。 兩個變量之間的關系程度是多少?

Image for post
Relationship between House Price and Land Area
房價與土地面積的關系

2.線圖或折線圖 (2. Line Plot or Line Chart)

Line Chart provides useful means for displaying data over time. The line chart is very useful in visualizing time series data or you want to visualize the changes over time. The line chart also provides a meaningful comparison between two or more than two series. For example the world Population world from 1950 to 2020. But always remember that data plotted on the x-axis must be a consistent interval.

折線圖提供了一些有用的方式來顯示一段時間內的數據。 折線圖對于可視化時間序列數據或您希望可視化隨時間的變化非常有用。 折線圖還提供了兩個或兩個以上系列之間的有意義的比較。 例如,1950年至2020年的世界人口世界。但請始終記住,在x軸上繪制的數據必須是一致的間隔。

Image for post
Trade between the US and China from 1990 to 2012
1990年至2012年中美之間的貿易

3.柱形圖或垂直條形圖 (3. Column Chart or Vertical Bar Chart)

This is one of the charts we have studied in our elementary school. Column Chart is the most common and most ignored charts. column Chart is very powerful in presenting information between categorical data and continuous data. This chart very helpful in comparing various categories in data.

這是我們在小學學習的圖表之一。 柱形圖是最常見和最被忽略的圖表。 柱形圖在呈現分類數據和連續數據之間的信息方面非常強大。 該圖表在比較數據中的各種類別時非常有幫助。

Column and bar charts are useful for comparing categorical or ordinal data, for illustrating differences between sets of values, and for showing proportions or percentages of a whole.

柱狀圖和條形圖可用于比較分類數據或有序數據,說明值集之間的差異以及顯示整體的比例或百分比。

For example, Comparing Education level in the district, or male vs female ratio in the district.

例如,比較該地區的教育水平,或該地區的男女比例。

Image for post
Corona Confirmed cases in different countries
不同國家的電暈確診病例

4.水平條形圖 (4. Horizontal Bar Chart)

A flipped version of the column chart and extremely useful because it is very easy to read. When you have more number of categories, it is always recommended to use a horizontal bar chart. our brain trained to read information from left to right, this makes a horizontal bar chart very easy to read. Horizontal bar charts are useful for comparing nominal data. when you are trying to draw to a horizontal bar chart, put information either in ascending or descending order.

柱狀圖的翻轉版本,非常有用,因為它非常易于閱讀。 當類別數量更多時,始終建議使用水平條形圖。 我們的大腦經過訓練可以從左到右讀取信息,這使得水平條形圖非常易于閱讀。 水平條形圖對于比較名義數據很有用。 當您嘗試繪制水平條形圖時,請按升序或降序排列信息。

Image for post
Comparing various Nominal categories
比較各種名義類別

5.面積圖 (5. Area Chart)

An Area chart combines the features of the Pie chart and the line chart. The area chart provides more information compare to alone pie charts and line charts. An area chart should be used more carefully if data have many series in the chart then it can clutter the observer mind.

面積圖結合了餅圖和折線圖的功能。 與單獨的餅圖和折線圖相比,面積圖提供了更多信息。 如果數據在圖表中有很多序列,則應該更仔細地使用面積圖,這樣會使觀察者的頭腦混亂。

Image for post
Fuel Consumption Total vs fossil Fuel over 60 years
60年來燃料消耗總量與化石燃料的對比

6.氣泡圖 (6. Bubble Chart)

This is one the way to present 3 dimension information in two dimensions. The bubble chart is a kind of scatter plot where the size of the bubble defines the value of the third variable. This chart extremely useful in explaining the socio-economic conditions of the place.

這是在二維中呈現3維信息的一種方式。 氣泡圖是一種散點圖,其中氣泡的大小定義了第三個變量的值。 該圖表在說明該地點的社會經濟狀況時非常有用。

Image for post
Bubble chart
氣泡圖

7.餅圖 (7. Pie Chart)

If we are interested in understanding the relative proportion of each data source to the total. Then Pie chart can be very useful. Pie chart displaying partition a circle into the Pie-shaped area showing the relative proportion. But Most of the experts suggest not using the pie chart because it is always difficult to compare different proportions in the pie chart.

如果我們有興趣了解每個數據源在總數中的相對比例。 餅圖可能會非常有用。 餅圖顯示將一個圓圈劃分為顯示相對比例的餅形區域。 但是大多數專家建議不要使用餅圖,因為在餅圖中比較不同的比例總是很困難。

Image for post
Pie Chart: Methods of Travelling to school
餅圖:上學的方法

8.華夫餅圖或方形餅圖: (8. Waffle Chart or Square Pie Chart :)

Waffle chart is a 10 X 10 cell grid in which each cell represents 1 percentage point summing up to a total of 100%. Waffle charts can be represented with conditional formatting where cells are highlighted with different colors based on the percentage value of that KPI.There are following used cases of Waffles chart:

華夫餅圖是一個10 X 10的單元格網格,其中每個單元格代表1個百分點的總和,總計為100%。 華夫餅圖可以用條件格式表示,其中根據該KPI的百分比值以不同的顏色突出顯示單元格。

  • To see a high-level view of items and their contribution to a whole

    全面了解項目及其對整體的貢獻
  • Showing different KPI’s percentage value

    顯示不同的KPI百分比值
Image for post

9.堆疊垂直和水平圖 (9. Stack Vertical and Horizontal Charts)

When you are interested in category plus subcategory information then stack chart can be useful. Stack Vertical and horizontal chart shows the total across different category but this stack chart provides information about subcategories. These subcategories can show either absolute value or sum to 100%.

如果您對類別以及子類別信息感興趣,那么堆棧圖可能會很有用。 堆棧垂直和水平圖表顯示了不同類別的總計,但是此堆棧圖表提供了有關子類別的信息。 這些子類別可以顯示絕對值或總和為100%。

Image for post

10.馬賽克圖 (10. Mosaic Plot)

This is a very underrated and uncommon chart. When you have both variables contain categorical data and you want to know the relationship between these variables. then Mosaic plot is very useful.

這是一張被低估且不常見的圖表。 當兩個變量都包含分類數據并且您想知道這些變量之間的關系時。 那么馬賽克圖非常有用。

A mosaic plot is a graphical method for visualizing data from two or more qualitative variables. Mosaic plots are also called Mekko charts due to their resemblance to a Marimekko print.

鑲嵌圖是一種用于可視化來自兩個或多個定性變量的數據的圖形方法。 由于與Marimekko的印刷相似,馬賽克圖也稱為Mekko圖

Image for post

We have a lot of other charts that can help in visualizing the information. But these are the most common useful charts. I used to say this data visualization is a combination of art and science. one should have a creative and scientific mind so that he/she provides the best visual for the data.

我們還有許多其他圖表可以幫助可視化信息。 但是,這些是最常見的有用圖表。 我曾經說過,這種數據可視化是藝術與科學的結合。 應該具有創造力和科學精神,以便為數據提供最佳視覺效果。

Note: In my Diagram, I have used a black background, which is not recommended by experts. These are charts I have shortlisted based on my experience, Please happy to use other types of charts as well.

注意:在我的圖表中,我使用了黑色背景,專家不建議這樣做。 這些是根據我的經驗我已入圍的圖表,請也使用其他類型的圖表。

HAPPY VISUALIZING📗📘📐🕞📌

快樂的視覺化📗📘📐🕞📌

  1. Business Analytics by James R Evans 2nd Ed.

    James R Evans第二版的業務分析。
  2. Storytelling with Data: A Data visualization guide for Business by Cole Nussbaumer Knaflic

    用數據講故事:Cole Nussbaumer Knaflic撰寫的企業數據可視化指南
  3. https://www.tableau.com/about/blog/2017/4/viz-variety-show-precise-waffle-charts-68462

    https://www.tableau.com/about/blog/2017/4/viz-variety-show-precise-waffle-charts-68462

翻譯自: https://medium.com/analytics-vidhya/top-10-most-useful-charts-in-data-visualization-a4c9365d03e4

數據圖表可視化

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/391557.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/391557.shtml
英文地址,請注明出處:http://en.pswp.cn/news/391557.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

javascript實現自動添加文本框功能

轉自:http://www.cnblogs.com/damonlan/archive/2011/08/03/2126046.html 昨天,我們公司的網絡小組決定為公司做一個內部的網站,主要是為員工比如發布公告啊、填寫相應信息、投訴、問題等等需求。我那同事給了我以下需求: 1.點擊一…

從Mysql slave system lock延遲說開去

本文主要分析 sql thread中system lock出現的原因,但是筆者并明沒有系統的學習過master-slave的代碼,這也是2018年的一個目標,2018年我都排滿了,悲劇。所以如果有錯誤請指出,也作為一個筆記用于后期學習。同時也給出筆…

傳智播客全棧_播客:從家庭學生到自學成才的全棧開發人員

傳智播客全棧In this weeks episode of the freeCodeCamp podcast, Abbey chats with Madison Kanna, a full-stack developer who works remotely for Mediavine. Madison describes how homeschooling affected her future learning style, how she tackles imposter syndrom…

leetcode 82. 刪除排序鏈表中的重復元素 II(map)

解題思路 map記錄數字出現的次數,出現次數大于1的數字從鏈表中移除 代碼 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(…

python 列表、字典多排序問題

版權聲明:本文為博主原創文章,遵循 CC 4.0 by-sa 版權協議,轉載請附上原文出處鏈接和本聲明。本文鏈接:https://blog.csdn.net/justin051/article/details/84289189Python使用sorted函數來排序: l [2,1,3,5,7,3]print…

接facebook廣告_Facebook廣告分析

接facebook廣告Is our company’s Facebook advertising even worth the effort?我們公司的Facebook廣告是否值得努力? 題: (QUESTION:) A company would like to know if their advertising is effective. Before you start, yes…. Facebook does ha…

如何創建自定義進度欄

Originally published on www.florin-pop.com最初發布在www.florin-pop.com The theme for week #14 of the Weekly Coding Challenge is: 每周編碼挑戰第14周的主題是: 進度條 (Progress Bar) A progress bar is used to show how far a user action is still in…

基于SpringBoot的CodeGenerator

title: 基于SpringBoot的CodeGenerator tags: SpringBootMybatis生成器PageHelper categories: springboot date: 2017-11-21 15:13:33背景 目前組織上對于一個基礎的crud的框架需求較多 因此選擇了SpringBoot作為基礎選型。 Spring Boot是由Pivotal團隊提供的全新框架&#xf…

seaborn線性關系數據可視化:時間線圖|熱圖|結構化圖表可視化

一、線性關系數據可視化lmplot( ) 表示對所統計的數據做散點圖,并擬合一個一元線性回歸關系。 lmplot(x, y, data, hueNone, colNone, rowNone, paletteNone,col_wrapNone, height5, aspect1,markers"o", sharexTrue,shareyTrue, hue_orderNone, col_orde…

hdu 1257

http://acm.hdu.edu.cn/showproblem.php?pid1257 題意:有個攔截系統,這個系統在最開始可以攔截任意高度的導彈,但是之后只能攔截不超過這個導彈高度的導彈,現在有N個導彈需要攔截,問你最少需要多少個攔截系統 思路&am…

eda可視化_5用于探索性數據分析(EDA)的高級可視化

eda可視化Early morning, a lady comes to meet Sherlock Holmes and Watson. Even before the lady opens her mouth and starts telling the reason for her visit, Sherlock can tell a lot about a person by his sheer power of observation and deduction. Similarly, we…

我的AWS開發人員考試未通過。 現在怎么辦?

I have just taken the AWS Certified Developer - Associate Exam on July 1st of 2019. The result? I failed.我剛剛在2019年7月1日參加了AWS認證開發人員-聯考。結果如何? 我失敗了。 The AWS Certified Developer - Associate (DVA-C01) has a scaled score …

關系數據可視化gephi

表示對象之間的關系,可通過gephi軟件實現,軟件下載官方地址https://gephi.org/users/download/ 如何來表示兩個對象之間的關系? 把對象變成點,點的大小、顏色可以是它的兩個參數,兩個點之間的關系可以用連線表示。連線…

Hyperledger Fabric 1.0 從零開始(十二)——fabric-sdk-java應用

Hyperledger Fabric 1.0 從零開始(十)——智能合約(參閱:Hyperledger Fabric Chaincode for Operators——實操智能合約) Hyperledger Fabric 1.0 從零開始(十一)——CouchDB(參閱&a…

css跑道_如何不超出跑道:計劃種子的簡單方法

css跑道There’s lots of startup advice floating around. I’m going to give you a very practical one that’s often missed — how to plan your early growth. The seed round is usually devoted to finding your product-market fit, meaning you start with no or li…

將json 填入表格_如何將Google表格用作JSON端點

將json 填入表格UPDATE: 5/13/2020 - New Share Dialog Box steps available below.更新:5/13/2020-下面提供了 新共享對話框步驟。 Thanks Erica H!謝謝埃里卡H! Are you building a prototype dynamic web application and need to collaborate with …

leetcode 173. 二叉搜索樹迭代器

實現一個二叉搜索樹迭代器類BSTIterator ,表示一個按中序遍歷二叉搜索樹(BST)的迭代器: BSTIterator(TreeNode root) 初始化 BSTIterator 類的一個對象。BST 的根節點 root 會作為構造函數的一部分給出。指針應初始化為一個不存在…

jyputer notebook 、jypyter、IPython basics

1 、修改jupyter默認工作目錄:打開cmd,在命令行下指定想要進的工作目錄,即鍵入“cd d/ G:\0工作面試\學習記錄”標紅部分是想要進入的工作目錄。 2、Tab補全 a、在命令行輸入表達式時,按下Tab鍵即可為任意變量(對象、…

cookie和session(1)

cookie和session 1.cookie產生 識別用戶 HTTP是無狀態協議,這就回出現這種現象:當你登錄一個頁面,然后轉到登錄網站的另一個頁面,服務器無法認識到。或者說兩次的訪問,服務器不能認識到是同一個客戶端的訪問&#xff0…

熊貓數據集_為數據科學拆箱熊貓

熊貓數據集If you are already familiar with NumPy, Pandas is just a package build on top of it. Pandas provide more flexibility than NumPy to work with data. While in NumPy we can only store values of single data type(dtype) Pandas has the flexibility to st…