算命數據_未來的數據科學家或算命精神向導

算命數據

Real Estate Sale Prices, Regression, and Classification: Data Science is the Future of Fortune Telling

房地產銷售價格,回歸和分類:數據科學是算命的未來

As we all know, I am unusually blessed with totally-real psychic abilities.

眾所周知,我擁有非凡的心理能力。

My background as a psychic extends way back to my childhood. On my sixth birthday, my mother got me a full astrological prediction printed out for the next year of my life. I, of course, was disappointed. Not because I was too young for uncanny predictions of the future. But because, I already had the psychic abilities needed to predict my fate. Each morning, I would read the patterns of cheerio-residue leftover in my breakfast cereal bowls. Obviously. I had a system for making sure my future stayed bright!

我的通靈背景可以追溯到童年時代。 在我的六歲生日那天,母親為我提供了有關生命的第二年的完整的占星術預測。 我當然感到失望。 不是因為我還太年輕,無法對未來做出不可思議的預測。 但是,因為我已經具備了預測命運的心理能力。 每天早晨,我都會在早餐谷物碗中閱讀殘留的麥角酒殘留的圖案。 明顯。 我有一個系統來確保我的前途一片光明!

In all seriousness though, as a 20-year-old young Data Scientist now, I discover more and more similarities between the skills of a fortune teller and a data scientist. Finally, I’ll be able to put my years of useless-seeming, arcane knowledge to good use. You don’t believe me?

嚴肅地說,作為一個現年20歲的年輕數據科學家,我發現算命先生和數據科學家之間的技能越來越相似。 最后,我將能夠充分利用我多年的無用的神秘知識。 你不相信我嗎?

Well algorithms and machine learning are a perfect example of modern fortune telling in practice. Nowadays, the experience of finding invasive amazon ads personally customized to your own interests is near universal:

好的算法和機器學習是實踐中現代算命的完美示例。 如今,找到針對您自己的興趣量身定制的侵入性亞馬遜廣告的經驗幾乎普及了:

Image for post

Machine learning is the process of teaching a computer to be able to predict future data points from its previous body of information. The main form of machine learning I focused on in my data science project, “Predicting Real Estate Sale Prices with the Ames, Iowa Housing Dataset,” is linear regression. This model creates a line of best fit over the dataset in order to predict the likelihood of a house being a certain price (if it has, say, 20,000 sq. ft., a finished garage, no fence, etc.)

機器學習是教會計算機能夠從其先前的信息主體預測未來數據點的過程。 在我的數據科學項目中,我關注的機器學習的主要形式是“使用愛荷華州住房數據集的Ames預測房地產銷售價格”,是線性回歸。 該模型在數據集中創建一條最合適的線,以預測房屋達到一定價格的可能性(例如,如果房屋有20,000平方英尺,已建成的車庫,沒有圍欄等)。

The following infographic, for example, represents my analysis of the relationship between Real Estate Sale Price (the X-axis) and Gross Living Area (the Y-axis). Outliers have been removed from this particular set of data, helping preserve the quality of my linear regression predictor. This relationship between Sale Price and Gross Living Area, in addition to many other factors that are correlated with Sale Price highly, become my tools to predict how a house of a certain demographic will be priced.

例如,以下信息圖代表我對房地產銷售價格(X軸)和總居住面積(Y軸)之間關系的分析。 已從此特定數據集中刪除了離群值,有助于保持線性回歸預測變量的質量。 銷售價格和總居住面積之間的這種關系,除了與銷售價格高度相關的許多其他因素外,還成為我預測特定人口的房屋如何定價的工具。

Image for post

Ultimately, my linear regression model became able to predict houses with only a 27,000 Root Mean-Squared Error. This means that for any given house price prediction my model makes, the house’s actual (non-predicted) Sale Price will be on average $27,000 away from my prediction. Given the fact that the majority of houses sell for above $50,000 at least, this amount of error is relatively acceptable. However, my fortune-telling wizard powers now extend even further than just “Linear Regression.”

最終,我的線性回歸模型開始能夠預測只有27,000均方根誤差的房屋。 這意味著,對于我的模型進行的任何給定的房價預測,該房屋的實際(未預測)售價均比我的預測平均低27,000美元。 考慮到大多數房屋的售價至少在50,000美元以上,因此這一誤差是可以接受的。 但是,我算命向導的功能現在不僅可以擴展到“線性回歸”。

I can also use “logistic regression” and “K-Nearest-Neighbors” classifiers to sort data, predicting which camps each of my data points will fall into. For instance, in my data science project “Tinder Problems or Relationship Advice?,” I scrape data from the subreddits for “Tinder” and “Relationship Advice” off of Reddit. Using a variety of Natural Language Processing techniques, I build a model that can predict whether or not that given post originates from “Tinder” or “Relationship Advice.”

我還可以使用“邏輯回歸”和“ K最近鄰”分類器對數據進行排序,以預測我的每個數據點將屬于哪個陣營。 例如,在我的數據科學項目“ Tinder問題或關系建議?”中,我從Reddit的“ Tinder”和“ Relationship Advice”子目錄中抓取了數據。 通過使用各種自然語言處理技術,我建立了一個模型,可以預測給定帖子是源自“ Tinder”還是“ Relationship Advice”。

Now, do I actually have the psychic ability to predict the future with ritual sacrifice? The world may never know. But, thankfully, I can just predict the future with Data Science skills like machine learning. I can create regressions to determine numerical predictions, classifiers to predict categorical outcomes, and I don’t even need to pull out my crystal ball.

現在,我真的有通過儀式犧牲來預測未來的心理能力嗎? 世界可能永遠不會知道。 但是,幸運的是,我可以借助諸如機器學習之類的數據科學技能來預測未來。 我可以創建回歸來確定數值預測,創建分類器來預測分類結果,甚至不需要抽出水晶球。

And even better, unlike arcane sorcery, Data Science grounds all of its predictions in facts and previously gathered data. If anything, that’s the real magic of Data Science. I can take any amount of information in any field and, with enough time and effort, predict the future. What’s more magical than that?

甚至更好的是,與奧術法術不同,數據科學將其所有預測基于事實和先前收集的數據。 如果有的話,那就是數據科學的真正魔力。 我可以在任何領域獲得大量信息,并花費足夠的時間和精力來預測未來。 有什么比這更神奇的?

翻譯自: https://medium.com/@jjp2196/data-scientist-or-fortune-telling-psychic-wizard-from-the-future-5e7a93025fe5

算命數據

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/389378.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/389378.shtml
英文地址,請注明出處:http://en.pswp.cn/news/389378.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

openai-gpt_為什么到處都看到GPT-3?

openai-gptDisclaimer: My opinions are informed by my experience maintaining Cortex, an open source platform for machine learning engineering.免責聲明:我的看法是基于我維護 機器學習工程的開源平臺 Cortex的 經驗而 得出 的。 If you frequent any part…

Pytorch高階API示范——DNN二分類模型

代碼部分: import numpy as np import pandas as pd from matplotlib import pyplot as plt import torch from torch import nn import torch.nn.functional as F from torch.utils.data import Dataset,DataLoader,TensorDataset""" 準備數據 &qu…

OO期末總結

$0 寫在前面 善始善終,臨近期末,為一學期的收獲和努力畫一個圓滿的句號。 $1 測試與正確性論證的比較 $1-0 什么是測試? 測試是使用人工操作或者程序自動運行的方式來檢驗它是否滿足規定的需求或弄清預期結果與實際結果之間的差別的過程。 它…

puppet puppet模塊、file模塊

轉載:http://blog.51cto.com/ywzhou/1577356 作用:通過puppet模塊自動控制客戶端的puppet配置,當需要修改客戶端的puppet配置時不用在客戶端一一設置。 1、服務端配置puppet模塊 (1)模塊清單 [rootpuppet ~]# tree /et…

數據可視化及其重要性:Python

Data visualization is an important skill to possess for anyone trying to extract and communicate insights from data. In the field of machine learning, visualization plays a key role throughout the entire process of analysis.對于任何試圖從數據中提取和傳達見…

熊貓數據集_熊貓邁向數據科學的第三部分

熊貓數據集Data is almost never perfect. Data Scientist spend more time in preprocessing dataset than in creating a model. Often we come across scenario where we find some missing data in data set. Such data points are represented with NaN or Not a Number i…

Pytorch有關張量的各種操作

一,創建張量 1. 生成float格式的張量: a torch.tensor([1,2,3],dtype torch.float)2. 生成從1到10,間隔是2的張量: b torch.arange(1,10,step 2)3. 隨機生成從0.0到6.28的10個張量 注意: (1).生成的10個張量中包含0.0和6.28&#xff…

mongodb安裝失敗與解決方法(附安裝教程)

安裝mongodb遇到的一些坑 浪費了大量的時間 在此記錄一下 主要是電腦系統win10企業版自帶的防火墻 當然還有其他的一些坑 一般的問題在第6步驟都可以解決,本教程的安裝步驟不夠詳細的話 請自行百度或谷歌 安裝教程很多 我是基于node.js使用mongodb結合Robo 3T數…

【洛谷算法題】P1046-[NOIP2005 普及組] 陶陶摘蘋果【入門2分支結構】Java題解

👨?💻博客主頁:花無缺 歡迎 點贊👍 收藏? 留言📝 加關注?! 本文由 花無缺 原創 收錄于專欄 【洛谷算法題】 文章目錄 【洛谷算法題】P1046-[NOIP2005 普及組] 陶陶摘蘋果【入門2分支結構】Java題解🌏題目…

web性能優化(理論)

什么是性能優化? 就是讓用戶感覺你的網站加載速度很快。。。哈哈哈。 分析 讓我們來分析一下從用戶按下回車鍵到網站呈現出來經歷了哪些和前端相關的過程。 緩存 首先看本地是否有緩存,如果有符合使用條件的緩存則不需要向服務器發送請求了。DNS查詢建立…

python多項式回歸_如何在Python中實現多項式回歸模型

python多項式回歸Let’s start with an example. We want to predict the Price of a home based on the Area and Age. The function below was used to generate Home Prices and we can pretend this is “real-world data” and our “job” is to create a model which wi…

充分利用UC berkeleys數據科學專業

By Kyra Wong and Kendall Kikkawa黃凱拉(Kyra Wong)和菊川健多 ( Kendall Kikkawa) 什么是“數據科學”? (What is ‘Data Science’?) Data collection, an important aspect of “data science”, is not a new idea. Before the tech boom, every industry al…

文本二叉樹折半查詢及其截取值

using System;using System.ComponentModel;using System.Data;using System.Drawing;using System.Text;using System.Windows.Forms;using System.Collections;using System.IO;namespace CS_ScanSample1{ /// <summary> /// Logic 的摘要說明。 /// </summary> …

nn.functional 和 nn.Module入門講解

本文來自《20天吃透Pytorch》 一&#xff0c;nn.functional 和 nn.Module 前面我們介紹了Pytorch的張量的結構操作和數學運算中的一些常用API。 利用這些張量的API我們可以構建出神經網絡相關的組件(如激活函數&#xff0c;模型層&#xff0c;損失函數)。 Pytorch和神經網絡…

10.30PMP試題每日一題

SC>0&#xff0c;CPI<1&#xff0c;說明項目截止到當前&#xff1a;A、進度超前&#xff0c;成本超值B、進度落后&#xff0c;成本結余C、進度超前&#xff0c;成本結余D、無法判斷 答案將于明天和新題一起揭曉&#xff01; 10.29試題答案&#xff1a;A轉載于:https://bl…

02-web框架

1 while True:print(server is waiting...)conn, addr server.accept()data conn.recv(1024) print(data:, data)# 1.得到請求的url路徑# ------------dict/obj d["path":"/login"]# d.get(”path“)# 按著http請求協議解析數據# 專注于web業…

ai驅動數據安全治理_AI驅動的Web數據收集解決方案的新起點

ai驅動數據安全治理Data gathering consists of many time-consuming and complex activities. These include proxy management, data parsing, infrastructure management, overcoming fingerprinting anti-measures, rendering JavaScript-heavy websites at scale, and muc…

從Text文本中讀值插入到數據庫中

/// <summary> /// 轉換數據&#xff0c;從Text文本中導入到數據庫中 /// </summary> private void ChangeTextToDb() { if(File.Exists("Storage Card/Zyk.txt")) { try { this.RecNum.Visibletrue; SqlCeCommand sqlCreateTable…

Dataset和DataLoader構建數據通道

重點在第二部分的構建數據通道和第三部分的加載數據集 Pytorch通常使用Dataset和DataLoader這兩個工具類來構建數據管道。 Dataset定義了數據集的內容&#xff0c;它相當于一個類似列表的數據結構&#xff0c;具有確定的長度&#xff0c;能夠用索引獲取數據集中的元素。 而D…

鐵拳nat映射_鐵拳如何重塑我的數據可視化設計流程

鐵拳nat映射It’s been a full year since I’ve become an independent data visualization designer. When I first started, projects that came to me didn’t relate to my interests or skills. Over the past eight months, it’s become very clear to me that when cl…