定義:有向圖強連通分量:在有向圖G中,如果兩個頂點vi,vj間(vi>vj)有一條從vi到vj的有向路徑,同時還有一條從vj到vi的有向路徑,則稱兩個頂點強連通如果有向圖G的每兩個頂點都強連通,稱G是一個強連通圖。有向圖的極大強連通子圖,稱為強連通分量。
求強連通分量:
vector<int>pic[maxn];
int dfn[maxn],low[maxn],ans[maxn];
bool ins[maxn];
stack<int>st;
int dind=0,block=0;
int siz[maxn],cud[maxn];
void tarjan(int x)
{dind++;dfn[x]=low[x]=dind;ins[x]=true;st.push(x);for (int j=0;j<pic[x].size();j++){int y=pic[x][j];if (dfn[y]==0){tarjan(y);low[x]=min(low[x],low[y]);}else if (ins[y]) low[x]=min(low[x],dfn[y]);}if (low[x]==dfn[x]){block++;siz[block]=0;while (true){int thi=st.top();st.pop();ans[thi]=block;siz[block]++;ins[thi]=false;if (thi==x) break;}}
}
例題1【UVA-11324 最大團】
分析:先計算強連通分量,然后建一張新圖,每個點的權值是它所包含的點的數量,求圖的最長鏈。
代碼:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
using namespace std;
const int maxn=1010;
vector<int> pic[maxn],new_[maxn];
int dfn[maxn],low[maxn],ans[maxn];
bool ins[maxn];
stack<int>st;
int dind=0,block=0;
int siz[maxn],dp[maxn],Ans;
void tarjan(int x)
{dind++;dfn[x]=low[x]=dind;ins[x]=true;st.push(x);for (int j=0;j<pic[x].size();j++){int y=pic[x][j];if (!dfn[y]){tarjan(y);low[x]=min(low[x],low[y]);}else if (ins[y]) low[x]=min(low[x],dfn[y]);}if (low[x]==dfn[x]){block++;siz[block]=0;while (true){int thi=st.top();st.pop();ans[thi]=block;siz[block]++;ins[thi]=false;if (thi==x) break;}}
}
int DP(int x){ if(dp[x]!=-1) return dp[x];int Max=0; for(int i=0;i<new_[x].size();i++) Max=max(Max,DP(new_[x][i])); return dp[x]=siz[x]+Max;
}
void init(int n){for(int i=1;i<=n;i++) pic[i].clear(),new_[i].clear();memset(dfn,0,sizeof(dfn)); memset(low,0,sizeof(low));memset(ans,0,sizeof(ans)); memset(ins,0,sizeof(ins));while(!st.empty()) st.pop(); dind=block=Ans=0;memset(siz,0,sizeof(siz)); memset(dp,-1,sizeof(dp));
}
int main(){int n,m,N,u,v;scanf("%d",&N);while(N--){scanf("%d%d",&n,&m);init(n);while(m--){scanf("%d%d",&u,&v);pic[u].push_back(v);}for(int i=1;i<=n;i++)if(!dfn[i]) tarjan(i);for(int i=1;i<=n;i++)for(int j=0;j<pic[i].size();j++)if(ans[i]!=ans[pic[i][j]]) new_[ans[pic[i][j]]].push_back(ans[i]);for(int i=1;i<=block;i++) Ans=max(Ans,DP(i));printf("%d\n",Ans);}return 0;
}
例題2【POJ 1236 學校網絡】
第一問:縮點后求入度為0的結點數量;
第二問:對于一張有向無環圖,可以通過把葉子結點連向根節點使它強連通;
like this:
所以需要連的邊數量為max(葉節點,根節點);
葉節點是出度為0的點,根節點是入度為0的點;
注意當只有一個強連通分量時,需要特判,為0;
代碼:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<set>
using namespace std;
const int maxn=110;
vector<int> pic[maxn];
int dfn[maxn],low[maxn],ans[maxn];
bool ins[maxn];
stack<int>st;
set<int>check[maxn];
int dind=0,block=0;
int siz[maxn];
int ans1,in[maxn],out[maxn];void tarjan(int x)
{dind++;dfn[x]=low[x]=dind;ins[x]=true;st.push(x);for (int j=0;j<pic[x].size();j++){int y=pic[x][j];if (!dfn[y]){tarjan(y);low[x]=min(low[x],low[y]);}else if (ins[y]) low[x]=min(low[x],dfn[y]);}if (low[x]==dfn[x]){block++;siz[block]=0;while (true){int thi=st.top();st.pop();ans[thi]=block;siz[block]++;ins[thi]=false;if (thi==x) break;}}
}
int main(){int n,i,j;scanf("%d",&n);for(i=1;i<=n;i++){scanf("%d",&j);while(j) pic[i].push_back(j),scanf("%d",&j); }for(int i=1;i<=n;i++)if(!dfn[i]) tarjan(i);for (i=1;i<=n;i++)for (j=0;j<pic[i].size();j++){int b1=ans[i],b2=ans[pic[i][j]];if (b1==b2) continue;if (check[b1].count(b2)) continue;check[b1].insert(b2);in[b2]++; out[b1]++;}int root=0,leaf=0;for(int i=1;i<=block;i++){if(!in[i]) root++;if(!out[i]) leaf++;}printf("%d\n",root);if(block==1) printf("0");else printf("%d",max(leaf,root));return 0;
}
類似的還有【HDU 2767】
很奇怪的是提交時出現了這樣尷尬的問題:
0_0_20950778_21662.cpp
0_0_20950778_21662.cpp(29) : error C3861: “min”:? 找不到標識符
0_0_20950778_21662.cpp(31) : error C3861: “min”:? 找不到標識符
0_0_20950778_21662.cpp(83) : error C3861: “max”:? 找不到標識符
然后在出錯的庫后面加上了#include "minmax.h",就過了?(莫名其妙)
代碼:
#include<iostream>
#include "minmax.h"
#include<cstdio>
#include<cstring>
#include<vector>
#include<stack>
#include<set>
using namespace std;
const int maxn=20010;
vector<int> pic[maxn];
int dfn[maxn],low[maxn],ans[maxn];
bool ins[maxn];
stack<int>st;
set<int>check[maxn];
int dind=0,block=0,siz[maxn];
int in[maxn],out[maxn],T;
void tarjan(int x)
{dind++;dfn[x]=low[x]=dind;ins[x]=true;st.push(x);for (int j=0;j<pic[x].size();j++){int y=pic[x][j];if (!dfn[y]){tarjan(y);low[x]=min(low[x],low[y]);}else if (ins[y]) low[x]=min(low[x],dfn[y]);}if (low[x]==dfn[x]){block++;siz[block]=0;while (true){int thi=st.top();st.pop();ans[thi]=block;siz[block]++;ins[thi]=false;if (thi==x) break;}}
}
void init(int n){for(int i=1;i<=n;i++) pic[i].clear(),check[i].clear();;memset(dfn,0,sizeof(dfn)); memset(low,0,sizeof(low));memset(ans,0,sizeof(ans)); memset(ins,0,sizeof(ins));while(!st.empty()) st.pop(); dind=0;block=0; memset(siz,0,sizeof(siz));memset(in,0,sizeof(in)); memset(out,0,sizeof(out));
}
int main(){scanf("%d",&T);while(T--){int n,i,j,m;scanf("%d%d",&n,&m);init(n);for(i=1;i<=m;i++){int x,y;scanf("%d%d",&x,&y);pic[x].push_back(y); }for(int i=1;i<=n;i++)if(!dfn[i]) tarjan(i);for (i=1;i<=n;i++)for (j=0;j<pic[i].size();j++){int b1=ans[i],b2=ans[pic[i][j]];if (b1==b2) continue;if (check[b1].count(b2)) continue;check[b1].insert(b2);in[b2]++; out[b1]++;}int root=0,leaf=0;for(int i=1;i<=block;i++){if(!in[i]) root++;if(!out[i]) leaf++;}if(block==1) printf("0\n");else printf("%d\n",max(leaf,root));}return 0;
}
————————————————————————————————————————————————————————
?來自Paper Cloud的博客,未經允許,請勿轉載,謝謝