一、介紹
本文主要介紹DataX的安裝與使用。
二、安裝
安裝:DataX/userGuid.md at master · alibaba/DataX · GitHub
六、案例
實現從MySQL同步數據到HDFS,然后使用Hive進行聚合計算并將結果存儲回MySQL。
步驟2:使用DataX同步MySQL數據到HDFS
創建一個DataX作業配置文件(例如mysql_to_hdfs.json
),內容如下:
{"job": {"content": [{"reader": {"name": "mysqlreader","parameter": {"username": "your_mysql_username","password": "your_mysql_password","column": ["*"],"connection": [{"table": ["your_mysql_table"],"jdbcUrl": ["jdbc:mysql://your_mysql_host:3306/your_database"]}]}},"writer": {"name": "hdfswriter","parameter": {"defaultFS": "hdfs://your_hdfs_namenode:8020","fileType": "text","path": "/user/hive/warehouse/your_hdfs_directory","fileName": "your_file_name","column": [{"name": "column1","type": "string"},{"name": "column2","type": "string"},// 添加其他列],"writeMode": "append"}}}]}
}
運行DataX作業:
python datax.py ./mysql_to_hdfs.json
步驟3:使用Hive創建外部表映射到HDFS上的數據
在Hive中創建一個外部表,映射到HDFS上的數據文件:
CREATE EXTERNAL TABLE your_hive_table (column1 string,column2 string,// 添加其他列
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION '/user/hive/warehouse/your_hdfs_directory';
步驟4:在Hive中進行聚合計算
在Hive中執行你的聚合查詢,例如:
INSERT OVERWRITE DIRECTORY '/user/hive/warehouse/your_hive_output_directory'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
SELECT column1, COUNT(column2)
FROM your_hive_table
GROUP BY column1;
步驟5:將Hive計算結果導出到MySQL
創建一個DataX作業配置文件(例如hdfs_to_mysql.json
),內容如下:
{"job": {"content": [{"reader": {"name": "hdfsreader","parameter": {"path": "/user/hive/warehouse/your_hive_output_directory","defaultFS": "hdfs://your_hdfs_namenode:8020","column": [{"name": "column1","type": "string"},{"name": "count_column2","type": "long"}],"fileType": "text","encoding": "UTF-8","fieldDelimiter": ","}},"writer": {"name": "mysqlwriter","parameter": {"username": "your_mysql_username","password": "your_mysql_password","writeMode": "replace","column": ["column1", "count_column2"],"connection": [{"table": ["your_mysql_output_table"],"jdbcUrl": ["jdbc:mysql://your_mysql_host:3306/your_database"]}]}}}]}
}
運行DataX作業:
python datax.py ./hdfs_to_mysql.json