遙感圖像數字水印系統優化方案

遙感圖像數字水印系統優化方案

1. 引言

遙感圖像在現代地理信息系統、環境監測、軍事偵察等領域發揮著重要作用。為了保護遙感圖像的版權和完整性,數字水印技術被廣泛應用。然而,現有的遙感圖像水印方案往往在不可見性、魯棒性和容量之間存在權衡,難以同時滿足所有要求。

本文針對現有遙感圖像水印代碼效果不佳的問題,提出了一套全面的優化方案。我們將從算法選擇、預處理技術、嵌入策略、提取方法和性能評估等多個方面進行深入分析和優化,旨在提升水印系統的整體性能。

2. 現有問題分析

在優化之前,我們需要全面分析現有代碼可能存在的問題:

  1. 不可見性差:水印嵌入后導致圖像質量明顯下降
  2. 魯棒性不足:水印難以抵抗常見圖像處理攻擊
  3. 容量限制:嵌入的水印信息量有限
  4. 計算效率低:嵌入和提取過程耗時過長
  5. 適應性差:對不同類型遙感圖像表現不一致

3. 優化方案設計

3.1 算法選擇與改進

3.1.1 離散小波變換(DWT)與奇異值分解(SVD)結合

傳統LSB(最低有效位)方法雖然簡單,但魯棒性較差。我們采用DWT+SVD組合算法,在頻域中嵌入水印,提高魯棒性。

import numpy as np
import pywt
import cv2
from scipy.linalg import svd
from skimage.metrics import peak_signal_noise_ratio as psnr
from skimage.metrics import structural_similarity as ssim
import matplotlib.pyplot as pltclass EnhancedWatermark:def __init__(self, wavelet='haar', level=2, alpha=0.1):self.wavelet = waveletself.level = levelself.alpha = alpha  # 水印強度因子def dwt2(self, image):"""二維離散小波變換"""coeffs = pywt.wavedec2(image, self.wavelet, level=self.level)return coeffsdef idwt2(self, coeffs):"""二維離散小波逆變換"""return pywt.waverec2(coeffs, self.wavelet)def svd_embed(self, host_block, watermark_block):"""使用SVD在主機圖像塊中嵌入水印"""U, S, Vh = svd(host_block, full_matrices=False)# 修改奇異值嵌入水印S_modified = S + self.alpha * watermark_block# 重構圖像塊host_modified = np.dot(U, np.dot(np.diag(S_modified), Vh))return host_modified, U, S, Vhdef svd_extract(self, host_modified, U, S, Vh):"""從修改后的圖像塊中提取水印"""U_mod, S_mod, Vh_mod = svd(host_modified, full_matrices=False)watermark_extracted = (S_mod - S) / self.alphareturn watermark_extracted
3.1.2 自適應水印強度調整

根據圖像局部特征自適應調整水印強度,在紋理復雜區域使用較強水印,在平滑區域使用較弱水印。

def calculate_texture_map(image, block_size=8):"""計算圖像紋理圖,用于自適應水印強度"""height, width = image.shapetexture_map = np.zeros_like(image, dtype=np.float32)for i in range(0, height, block_size):for j in range(0, width, block_size):block = image[i:i+block_size, j:j+block_size]if block.size > 0:# 使用標準差作為紋理復雜度的度量texture = np.std(block)texture_map[i:i+block_size, j:j+block_size] = texture# 歸一化紋理圖texture_map = (texture_map - texture_map.min()) / (texture_map.max() - texture_map.min() + 1e-10)return texture_mapdef adaptive_alpha(texture_map, base_alpha=0.05, max_alpha=0.2):"""根據紋理圖計算自適應水印強度"""return base_alpha + (max_alpha - base_alpha) * texture_map

3.2 預處理優化

3.2.1 圖像預處理
def preprocess_image(image, target_size=None, normalize=True):"""圖像預處理函數:param image: 輸入圖像:param target_size: 目標尺寸 (width, height):param normalize: 是否歸一化到[0,1]:return: 預處理后的圖像"""# 轉換為灰度圖像(如果原是彩色)if len(image.shape) == 3:image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 調整尺寸if target_size is not None:image = cv2.resize(image, target_size, interpolation=cv2.INTER_AREA)# 歸一化if normalize:image = image.astype(np.float32) / 255.0return imagedef preprocess_watermark(watermark, target_shape):"""水印預處理函數:param watermark: 輸入水印,可以是二值圖像或文本:param target_shape: 目標形狀:return: 預處理后的水印圖像"""if isinstance(watermark, str):# 文本水印轉換為圖像watermark_img = text_to_image(watermark, target_shape)else:# 圖像水印處理watermark_img = cv2.resize(watermark, (target_shape[1], target_shape[0]))# 二值化處理if len(watermark_img.shape) == 3:watermark_img = cv2.cvtColor(watermark_img, cv2.COLOR_BGR2GRAY)# 歸一化到[0,1]watermark_img = watermark_img.astype(np.float32) / 255.0return watermark_imgdef text_to_image(text, shape, font_scale=0.8, thickness=2):"""將文本轉換為圖像"""img = np.zeros(shape, dtype=np.uint8)font = cv2.FONT_HERSHEY_SIMPLEXtext_size = cv2.getTextSize(text, font, font_scale, thickness)[0]text_x = (shape[1] - text_size[0]) // 2text_y = (shape[0] + text_size[1]) // 2cv2.putText(img, text, (text_x, text_y), font, font_scale, (255, 255, 255), thickness)return img
3.2.2 基于人眼視覺系統(HVS)的優化

利用人眼視覺系統特性,在不易察覺的區域嵌入更強水印。

def calculate_hvs_mask(image, block_size=8):"""基于人眼視覺系統計算掩碼在紋理復雜和邊緣區域可以嵌入更強水印"""# 計算梯度幅值sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)# 計算局部方差local_variance = np.zeros_like(image)for i in range(0, image.shape[0], block_size):for j in range(0, image.shape[1], block_size):block = image[i:i+block_size, j:j+block_size]if block.size > 0:local_variance[i:i+block_size, j:j+block_size] = np.var(block)# 歸一化gradient_magnitude = (gradient_magnitude - gradient_magnitude.min()) / (gradient_magnitude.max() - gradient_magnitude.min() + 1e-10)local_variance = (local_variance - local_variance.min()) / (local_variance.max() - local_variance.min() + 1e-10)# 結合梯度和方差信息hvs_mask = 0.7 * gradient_magnitude + 0.3 * local_variancereturn hvs_mask

3.3 水印嵌入優化

def embed_watermark_optimized(host_image, watermark, wavelet='haar', level=2, base_alpha=0.05):"""優化的水印嵌入函數:param host_image: 主機圖像:param watermark: 水印圖像或文本:param wavelet: 使用的小波基:param level: 小波分解層數:param base_alpha: 基礎水印強度:return: 含水印圖像、嵌入參數"""# 預處理主機圖像host_processed = preprocess_image(host_image)# 預處理水印watermark_processed = preprocess_watermark(watermark, host_processed.shape)# 計算HVS掩碼和自適應alphahvs_mask = calculate_hvs_mask(host_processed)alpha_map = adaptive_alpha(hvs_mask, base_alpha=base_alpha)# 小波分解coeffs = pywt.wavedec2(host_processed, wavelet, level=level)cA = coeffs[0]  # 近似系數# 在近似系數中嵌入水印watermark_resized = cv2.resize(watermark_processed, (cA.shape[1], cA.shape[0]))# 使用SVD嵌入U, S, Vh = svd(cA, full_matrices=False)S_modified = S + alpha_map[:S.shape[0], :S.shape[1]] * watermark_resized# 重構近似系數cA_modified = np.dot(U, np.dot(np.diag(S_modified), Vh))# 更新系數coeffs_modified = list(coeffs)coeffs_modified[0] = cA_modified# 小波重構watermarked_image = pywt.waverec2(coeffs_modified, wavelet)# 后處理watermarked_image = np.clip(watermarked_image, 0, 1)# 保存嵌入參數用于提取embed_params = {'U': U,'S': S,'Vh': Vh,'alpha_map': alpha_map,'wavelet': wavelet,'level': level,'watermark_shape': watermark_resized.shape}return watermarked_image, embed_paramsdef block_based_embedding(host_image, watermark, block_size=64, wavelet='haar'):"""基于分塊的水印嵌入,提高局部適應性"""height, width = host_image.shapewatermarked_image = np.copy(host_image)embed_params = {}# 確保水印可以被分塊整除wm_height, wm_width = watermark.shapeblocks_vertical = height // block_sizeblocks_horizontal = width // block_size# 調整水印尺寸watermark_resized = cv2.resize(watermark, (blocks_horizontal, blocks_vertical))param_blocks = {}for i in range(blocks_vertical):for j in range(blocks_horizontal):# 提取圖像塊block = host_image[i*block_size:(i+1)*block_size, j*block_size:(j+1)*block_size]if block.size == 0:continue# 計算該塊的紋理復雜度texture = np.std(block)alpha = 0.05 + 0.15 * (texture / (np.std(host_image) + 1e-10))# 小波分解coeffs = pywt.wavedec2(block, wavelet, level=2)cA = coeffs[0]# 嵌入水印位if i < watermark_resized.shape[0] and j < watermark_resized.shape[1]:wm_bit = watermark_resized[i, j]# SVD分解U, S, Vh = svd(cA, full_matrices=False)S_modified = S + alpha * wm_bit# 重構cA_modified = np.dot(U, np.dot(np.diag(S_modified), Vh))# 更新系數coeffs_modified = list(coeffs)coeffs_modified[0] = cA_modified# 逆小波變換block_modified = pywt.waverec2(coeffs_modified, wavelet)# 放回圖像watermarked_image[i*block_size:(i+1)*block_size, j*block_size:(j+1)*block_size] = block_modified# 保存參數param_blocks[(i, j)] = {'U': U,'S': S,'Vh': Vh,'alpha': alpha}embed_params['param_blocks'] = param_blocksembed_params['block_size'] = block_sizeembed_params['wm_shape'] = watermark_resized.shapereturn watermarked_image, embed_params

3.4 水印提取優化

def extract_watermark_optimized(watermarked_image, embed_params, original_image=None):"""優化的水印提取函數:param watermarked_image: 含水印圖像:param embed_params: 嵌入時保存的參數:param original_image: 原始圖像(非盲水印時需要):return: 提取的水印"""# 預處理圖像watermarked_processed = preprocess_image(watermarked_image)if 'param_blocks' in embed_params:# 分塊水印提取return extract_block_based(watermarked_processed, embed_params, original_image)else:# 全局水印提取return extract_global(watermarked_processed, embed_params, original_image)def extract_global(watermarked_image, embed_params, original_image):"""全局水印提取"""wavelet = embed_params['wavelet']level = embed_params['level']U = embed_params['U']S = embed_params['S']Vh = embed_params['Vh']alpha_map = embed_params['alpha_map']wm_shape = embed_params['watermark_shape']# 小波分解coeffs = pywt.wavedec2(watermarked_image, wavelet, level=level)cA_modified = coeffs[0]# SVD分解修改后的近似系數U_mod, S_mod, Vh_mod = svd(cA_modified, full_matrices=False)# 提取水印watermark_extracted = (S_mod - S) / alpha_map[:S.shape[0], :S.shape[1]]# 調整尺寸watermark_extracted = cv2.resize(watermark_extracted, (wm_shape[1], wm_shape[0]))return watermark_extracteddef extract_block_based(watermarked_image, embed_params, original_image):"""分塊水印提取"""param_blocks = embed_params['param_blocks']block_size = embed_params['block_size']wm_shape = embed_params['wm_shape']wavelet = embed_params.get('wavelet', 'haar')height, width = watermarked_image.shapewatermark_extracted = np.zeros(wm_shape)for i in range(wm_shape[0]):for j in range(wm_shape[1]):if (i, j) not in param_blocks:continue# 提取圖像塊block = watermarked_image[i*block_size:(i+1)*block_size, j*block_size:(j+1)*block_size]if block.size == 0:continue# 獲取該塊的參數params = param_blocks[(i, j)]U = params['U']S = params['S']Vh = params['Vh']alpha = params['alpha']# 小波分解coeffs = pywt.wavedec2(block, wavelet, level=2)cA_modified = coeffs[0]# SVD分解U_mod, S_mod, Vh_mod = svd(cA_modified, full_matrices=False)# 提取水印wm_value = (S_mod - S) / alphawatermark_extracted[i, j] = np.mean(wm_value)return watermark_extracteddef blind_extraction(watermarked_image, wavelet='haar', level=2, wm_shape=(64, 64)):"""盲水印提取(不需要原始圖像)這種方法魯棒性較差,但適用于某些場景"""# 小波分解coeffs = pywt.wavedec2(watermarked_image, wavelet, level=level)cA = coeffs[0]# 假設水印嵌入在奇異值中U, S, Vh = svd(cA, full_matrices=False)# 使用統計方法估計水印# 這里使用簡單的閾值方法,實際應用中可能需要更復雜的方法watermark_estimated = np.zeros_like(cA)mean_S = np.mean(S)std_S = np.std(S)# 假設水印是二值的,通過統計異常值來提取threshold = mean_S + std_Swatermark_estimated = (S > threshold).astype(np.float32)# 調整尺寸watermark_extracted = cv2.resize(watermark_estimated, (wm_shape[1], wm_shape[0]))return watermark_extracted

3.5 后處理與增強

def postprocess_watermark(extracted_watermark, method='threshold', **kwargs):"""后處理提取的水印,增強可讀性"""if method == 'threshold':# 二值化threshold = kwargs.get('threshold', 0.5)processed = (extracted_watermark > threshold).astype(np.float32)elif method == 'median_filter':# 中值濾波kernel_size = kwargs.get('kernel_size', 3)processed = cv2.medianBlur((extracted_watermark * 255).astype(np.uint8), kernel_size)processed = processed.astype(np.float32) / 255.0elif method == 'wiener_filter':# 維納濾波processed = cv2.filter2D(extracted_watermark, -1, wiener_kernel(5))else:processed = extracted_watermarkreturn processeddef wiener_kernel(size=5):"""生成維納濾波核"""kernel = np.ones((size, size)) / (size * size)return kerneldef enhance_watermark_quality(watermark, enhance_method='histogram_equalization'):"""增強水印質量"""if enhance_method == 'histogram_equalization':# 直方圖均衡化watermark_uint8 = (watermark * 255).astype(np.uint8)enhanced = cv2.equalizeHist(watermark_uint8)return enhanced.astype(np.float32) / 255.0elif enhance_method == 'contrast_stretch':# 對比度拉伸min_val = np.min(watermark)max_val = np.max(watermark)if max_val > min_val:enhanced = (watermark - min_val) / (max_val - min_val)else:enhanced = watermarkreturn enhancedelse:return watermark

3.6 魯棒性測試與評估

def test_robustness(watermarked_image, original_image, embed_params, attacks=None):"""測試水印魯棒性"""if attacks is None:attacks = {'gaussian_noise': lambda img: add_gaussian_noise(img, mean=0, sigma=0.01),'salt_pepper': lambda img: add_salt_pepper_noise(img, amount=0.01),'gaussian_blur': lambda img: cv2.GaussianBlur(img, (5, 5), 0.5),'jpeg_compression': lambda img: jpeg_compression(img, quality=70),'cropping': lambda img: cropping_attack(img, ratio=0.1),'rotation': lambda img: rotate_image(img, angle=5),'scaling': lambda img: scaling_attack(img, ratio=0.9)}results = {}extracted_watermarks = {}for attack_name, attack_func in attacks.items():# 應用攻擊attacked_image = attack_func(watermarked_image.copy())# 提取水印try:extracted_wm = extract_watermark_optimized(attacked_image, embed_params, original_image)extracted_watermarks[attack_name] = extracted_wm# 評估提取質量(如果有原始水印)# 這里需要原始水印信息,實際應用中可能需要調整except Exception as e:print(f"攻擊 {attack_name} 失敗: {e}")extracted_watermarks[attack_name] = Nonereturn extracted_watermarksdef add_gaussian_noise(image, mean=0, sigma=0.01):"""添加高斯噪聲"""noise = np.random.normal(mean, sigma, image.shape)noisy_image = image + noisereturn np.clip(noisy_image, 0, 1)def add_salt_pepper_noise(image, amount=0.01):"""添加椒鹽噪聲"""noisy_image = np.copy(image)# 鹽噪聲salt_mask = np.random.random(image.shape) < amount/2noisy_image[salt_mask] = 1# 椒噪聲pepper_mask = np.random.random(image.shape) < amount/2noisy_image[pepper_mask] = 0return noisy_imagedef jpeg_compression(image, quality=70):"""JPEG壓縮攻擊"""# 轉換為0-255范圍image_uint8 = (image * 255).astype(np.uint8)# JPEG壓縮encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]result, encimg = cv2.imencode('.jpg', image_uint8, encode_param)# 解碼decimg = cv2.imdecode(encimg, 0)return decimg.astype(np.float32) / 255.0def cropping_attack(image, ratio=0.1):"""裁剪攻擊"""h, w = image.shapecrop_h = int(h * ratio)crop_w = int(w * ratio)cropped = image[crop_h:-crop_h, crop_w:-crop_w]# 恢復原始尺寸return cv2.resize(cropped, (w, h))def rotate_image(image, angle=5):"""旋轉攻擊"""h, w = image.shapecenter = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotateddef scaling_attack(image, ratio=0.9):"""縮放攻擊"""h, w = image.shapescaled = cv2.resize(image, (int(w * ratio), int(h * ratio)))# 恢復原始尺寸return cv2.resize(scaled, (w, h))def calculate_metrics(original, watermarked, extracted_wm, original_wm=None):"""計算各種評估指標"""metrics = {}# 圖像質量指標metrics['psnr'] = psnr(original, watermarked, data_range=1.0)metrics['ssim'] = ssim(original, watermarked, data_range=1.0)if original_wm is not None and extracted_wm is not None:# 調整尺寸以便比較extracted_resized = cv2.resize(extracted_wm, (original_wm.shape[1], original_wm.shape[0]))# 水印相似度指標metrics['wm_correlation'] = np.corrcoef(original_wm.flatten(), extracted_resized.flatten())[0, 1]metrics['wm_ber'] = calculate_ber(original_wm, extracted_resized)return metricsdef calculate_ber(original, extracted, threshold=0.5):"""計算誤碼率(Bit Error Rate)"""original_binary = (original > threshold).astype(np.int8)extracted_binary = (extracted > threshold).astype(np.int8)if original_binary.shape != extracted_binary.shape:extracted_binary = cv2.resize(extracted_binary, (original_binary.shape[1], original_binary.shape[0]))error_bits = np.sum(original_binary != extracted_binary)total_bits = original_binary.sizereturn error_bits / total_bits

3.7 完整的水印系統類

class RemoteSensingWatermarkSystem:"""完整的遙感圖像水印系統"""def __init__(self, config=None):if config is None:config = {'wavelet': 'haar','level': 2,'base_alpha': 0.05,'max_alpha': 0.2,'block_size': 64,'embed_method': 'adaptive_global'  # 'adaptive_global' or 'block_based'}self.config = configself.embed_params = Nonedef embed(self, host_image, watermark):"""嵌入水印"""# 預處理主機圖像host_processed = preprocess_image(host_image)# 預處理水印watermark_processed = preprocess_watermark(watermark, host_processed.shape)if self.config['embed_method'] == 'adaptive_global':watermarked_image, self.embed_params = embed_watermark_optimized(host_processed, watermark_processed,wavelet=self.config['wavelet'],level=self.config['level'],base_alpha=self.config['base_alpha'])elif self.config['embed_method'] == 'block_based':watermarked_image, self.embed_params = block_based_embedding(host_processed, watermark_processed,block_size=self.config['block_size'],wavelet=self.config['wavelet'])else:raise ValueError("不支持的嵌入方法")# 轉換為0-255范圍輸出watermarked_uint8 = (watermarked_image * 255).astype(np.uint8)return watermarked_uint8def extract(self, watermarked_image, original_image=None):"""提取水印"""if self.embed_params is None:raise ValueError("請先嵌入水印或提供嵌入參數")watermarked_processed = preprocess_image(watermarked_image)if original_image is not None:original_processed = preprocess_image(original_image)else:original_processed = Noneextracted_wm = extract_watermark_optimized(watermarked_processed, self.embed_params, original_processed)# 后處理extracted_processed = postprocess_watermark(extracted_wm, method='threshold')extracted_enhanced = enhance_watermark_quality(extracted_processed)# 轉換為0-255范圍輸出extracted_uint8 = (extracted_enhanced * 255).astype(np.uint8)return extracted_uint8def test_robustness(self, watermarked_image, original_image, attacks=None):"""測試魯棒性"""watermarked_processed = preprocess_image(watermarked_image)original_processed = preprocess_image(original_image)return test_robustness(watermarked_processed, original_processed, self.embed_params, attacks)def evaluate(self, original_image, watermarked_image, original_watermark=None):"""全面評估系統性能"""original_processed = preprocess_image(original_image)watermarked_processed = preprocess_image(watermarked_image)if original_watermark is not None:original_wm_processed = preprocess_watermark(original_watermark, original_processed.shape)else:original_wm_processed = None# 提取水印用于評估extracted_wm = self.extract(watermarked_image, original_image)extracted_processed = preprocess_image(extracted_wm, target_size=original_processed.shape)# 計算指標metrics = calculate_metrics(original_processed, watermarked_processed, extracted_processed, original_wm_processed)return metrics, extracted_wm

3.8 可視化工具

def plot_results(original, watermarked, extracted_wm, original_wm=None, metrics=None):"""可視化結果"""fig, axes = plt.subplots(2, 2, figsize=(12, 10))# 原始圖像axes[0, 0].imshow(original, cmap='gray')axes[0, 0].set_title('原始圖像')axes[0, 0].axis('off')# 含水印圖像axes[0, 1].imshow(watermarked, cmap='gray')axes[0, 1].set_title('含水印圖像')axes[0, 1].axis('off')# 提取的水印axes[1, 0].imshow(extracted_wm, cmap='gray')axes[1, 0].set_title('提取的水印')axes[1, 0].axis('off')# 原始水印(如果有)if original_wm is not None:axes[1, 1].imshow(original_wm, cmap='gray')axes[1, 1].set_title('原始水印')else:axes[1, 1].axis('off')# 添加指標文本if metrics is not None:metrics_text = f"PSNR: {metrics.get('psnr', 0):.2f} dB\nSSIM: {metrics.get('ssim', 0):.4f}"if 'wm_correlation' in metrics:metrics_text += f"\n相關系數: {metrics['wm_correlation']:.4f}"if 'wm_ber' in metrics:metrics_text += f"\n誤碼率: {metrics['wm_ber']:.4f}"plt.figtext(0.5, 0.01, metrics_text, ha='center', fontsize=12, bbox=dict(facecolor='lightgray', alpha=0.5))plt.tight_layout()plt.show()def plot_robustness_test(results, original_wm=None):"""可視化魯棒性測試結果"""n_attacks = len(results)n_cols = 3n_rows = (n_attacks + n_cols - 1) // n_colsfig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5 * n_rows))axes = axes.flatten()for i, (attack_name, extracted_wm) in enumerate(results.items()):if extracted_wm is not None:axes[i].imshow(extracted_wm, cmap='gray')axes[i].set_title(attack_name)axes[i].axis('off')# 隱藏多余的子圖for j in range(i + 1, len(axes)):axes[j].axis('off')plt.tight_layout()plt.show()

4. 使用示例

# 示例使用代碼
if __name__ == "__main__":# 讀取遙感圖像image_path = "remote_sensing_image.tif"original_image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)# 創建水印(可以是文本或圖像)watermark_text = "Copyright 2023"# 初始化水印系統watermark_system = RemoteSensingWatermarkSystem({'wavelet': 'haar','level': 2,'base_alpha': 0.05,'embed_method': 'adaptive_global'})# 嵌入水印watermarked_image = watermark_system.embed(original_image, watermark_text)# 提取水印extracted_watermark = watermark_system.extract(watermarked_image, original_image)# 評估性能metrics, extracted_wm = watermark_system.evaluate(original_image, watermarked_image, watermark_text)# 可視化結果plot_results(original_image, watermarked_image, extracted_wm, text_to_image(watermark_text, original_image.shape), metrics)# 測試魯棒性attacks = {'高斯噪聲': lambda img: add_gaussian_noise(img, sigma=0.02),'椒鹽噪聲': lambda img: add_salt_pepper_noise(img, amount=0.03),'高斯模糊': lambda img: cv2.GaussianBlur(img, (5, 5), 0.8),'JPEG壓縮': lambda img: jpeg_compression(img, quality=60),}robustness_results = watermark_system.test_robustness(watermarked_image, original_image, attacks)plot_robustness_test(robustness_results)

5. 性能優化建議

  1. 多線程處理:對于大型遙感圖像,使用多線程進行分塊處理
  2. GPU加速:利用CUDA或OpenCL進行小波變換和矩陣運算加速
  3. 內存優化:使用內存映射文件處理超大型圖像
  4. 算法優化:針對特定類型遙感圖像優化參數

6. 總結

本文提出了一套完整的遙感圖像水印系統優化方案,主要改進包括:

  1. 采用DWT+SVD組合算法提高魯棒性
  2. 引入自適應水印強度調整改善不可見性
  3. 實現基于HVS的嵌入策略增強視覺質量
  4. 提供分塊和全局兩種嵌入方式適應不同需求
  5. 完善的魯棒性測試和評估框架
  6. 豐富的可視化工具便于結果分析

該優化方案顯著提升了水印系統的不可見性、魯棒性和實用性,能夠滿足大多數遙感圖像版權保護的需求。實際應用中,可以根據具體圖像特性和需求調整參數,進一步優化性能。

通過以上優化,遙感圖像水印系統能夠在保持高圖像質量的同時,有效抵抗各種常見圖像處理攻擊,為遙感圖像的版權保護提供了可靠的技術手段。

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/bicheng/98255.shtml
繁體地址,請注明出處:http://hk.pswp.cn/bicheng/98255.shtml
英文地址,請注明出處:http://en.pswp.cn/bicheng/98255.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

鴻蒙高效數據處理框架全攻略:緩存、并行與流式實戰

摘要 在如今的物聯網和智能設備世界里&#xff0c;數據已經成為最關鍵的資源。無論是可穿戴設備、智能家居&#xff0c;還是車載系統&#xff0c;每一秒都會產生大量數據。如果缺少一套高效的數據處理框架&#xff0c;開發者就可能面臨內存溢出、處理延遲大、設備卡頓等問題。本…

零售企業數字化轉型的道、法、術:基于開源AI大模型AI智能名片S2B2C商城小程序的戰略重構

摘要 在數字經濟與消費升級的雙重驅動下&#xff0c;零售企業正經歷從"流量爭奪"到"用戶時間爭奪"的范式轉變。本文以阿里巴巴、京東、萬達三大巨頭的戰略實踐為樣本&#xff0c;結合開源AI大模型、AI智能名片與S2B2C商城小程序的技術特性&#xff0c;提出…

瑞云渲染為電影《731》提供云渲染技術支持,助力影片全球上映

在“九一八事變”94周年這一莊嚴沉重的紀念時刻&#xff0c;抗戰電影《731》&#xff08;海外名&#xff1a;《EVIL UNBOUND》&#xff09;于世界各地上映&#xff0c;激起廣泛的社會反響與深遠的歷史思考。 瑞云渲染&#xff08;Renderbus&#xff09;作為全球領先的云渲染服…

EasyDSS視頻直播RTMP推流技術如何實現多機型的無人機視頻統一直播

在當今這個瞬息萬變的傳媒時代&#xff0c;無人機與推流直播的結合&#xff0c;正以前所未有的方式重塑著信息傳播的邊界。無人機以其獨特的空中視角和靈活的機動性&#xff0c;為直播行業帶來了革命性的變化&#xff0c;而推流直播技術的成熟&#xff0c;則讓這一變化得以實時…

str.maketrans() 方法

str.maketrans() 方法 功能概述 str.maketrans() 是 Python 中字符串對象的一個靜態方法&#xff0c;用于創建一個字符映射轉換表。這個轉換表本質上是一個字典&#xff0c;它定義了字符之間的替換規則&#xff0c;后續可以被 str.translate() 方法使用&#xff0c;以實現字符串…

敏感詞檢測API平臺推薦

敏感詞檢測API平臺推薦 背景簡介 敏感詞檢測用于識別文本中的違規、涉政、涉黃、辱罵等敏感詞&#xff0c;幫助產品在評論、彈幕、客服對話、運營文案、廣告投放等環節實現自動化質檢與合規攔截。市場上主要有兩類服務商&#xff1a; 專業型廠商&#xff1a;聚焦算法與工程落…

Day25_【深度學習(3)—PyTorch使用(6)—張量拼接操作】

張量的拼接操作在神經網絡搭建過程中是非常常用的方法&#xff0c;例如: 在后面將要學習的注意力機制中都使用到了張量拼接。torch.cat 函數可以將兩個張量根據指定的維度拼接起來&#xff0c;不改變數據維度。前提&#xff1a;除了拼接的維度&#xff0c;其他維度一定要相同。…

機器視覺在PCB制造中的檢測應用

機器視覺在PCB制造中的檢測應用&#x1f3af;機器視覺在PCB制造中的檢測應用&#x1f3af;一、基材預處理階段&#xff1a;基材表面缺陷檢測&#x1f3af;二、線路制作階段&#xff1a;線路精度與缺陷檢測&#x1f3af;三、鉆孔與導通孔加工階段&#xff1a;孔位與孔質量檢測&a…

Python面試題及詳細答案150道(136-150) -- 網絡編程及常見問題篇

《前后端面試題》專欄集合了前后端各個知識模塊的面試題&#xff0c;包括html&#xff0c;javascript&#xff0c;css&#xff0c;vue&#xff0c;react&#xff0c;java&#xff0c;Openlayers&#xff0c;leaflet&#xff0c;cesium&#xff0c;mapboxGL&#xff0c;threejs&…

【pdf.js】pdf檢索對應文本和高亮功能

文章目錄需求場景1、使用pdf.js解決pdf.js跨域2、預覽方案3、檢索方案4、實現效果??總結需求場景 本文主要針對網頁端 PDF 本地預覽場景&#xff0c;支持通過關鍵字對 PDF 進行檢索查詢&#xff0c;當點擊檢索結果列表中的對應關鍵字時&#xff0c;可同步在預覽界面中觸發內容…

kafka--基礎知識點--9.1--consumer 至多一次、至少一次、精確一次

1 自動提交 1.1 原理&#xff1a; Kafka 消費者后臺線程每隔 auto.commit.interval.ms 自動提交最近一次 poll() 的 offset 無需開發者干預 1.2 示例&#xff1a; enable.auto.committrue auto.commit.interval.ms5000 # 每 5 秒自動提交一次 from confluent_kafka import Con…

Python中的類:從入門到實戰,掌握面向對象編程的核心

目錄 一、類的概念&#xff1a;從“模板”到“個體” 1.1 什么是類&#xff1f; 1.2 類與對象的關系&#xff1a;模板與實例 1.3 類的核心價值&#xff1a;封裝與抽象 二、類的形式&#xff1a;Python中的類定義語法 2.1 類的基本定義 2.2 關鍵組成解析 &#xff08;1&a…

用戶爭奪與智能管理:定制開發開源AI智能名片S2B2C商城小程序的戰略價值與實踐路徑

摘要 在零售行業數字化轉型的浪潮中&#xff0c;用戶爭奪已從傳統流量競爭轉向對用戶24小時時間分配權的深度滲透。本文以定制開發開源AI智能名片S2B2C商城小程序為核心研究對象&#xff0c;系統探討其通過技術賦能重構用戶接觸場景、提升轉化效率、增強會員黏性的作用機制。結…

數學_向量投影相關

Part 1 你的問題是&#xff1a;設相機光心的朝向 w (0, 0, 1)&#xff08;即朝向正前方&#xff0c;Z 軸正方向&#xff09;&#xff0c; 在 相機坐標系下有一個平面&#xff0c;其法向量為 n_cam&#xff0c; 問&#xff1a;w 在該平面上的投影的單位向量 w_p&#xff0c;是不…

從RTSP到HLS:構建一個簡單的流媒體轉換服務(java spring)

從RTSP到HLS&#xff1a;構建一個簡單的流媒體轉換服務(java spring) 在當今的網絡環境中&#xff0c;實時視頻流媒體應用越來越廣泛&#xff0c;從在線直播到安防監控&#xff0c;都離不開流媒體技術的支持。然而&#xff0c;不同的流媒體協議有著各自的特點和適用場景。本文…

【代碼隨想錄算法訓練營——Day15】二叉樹——110.平衡二叉樹、257.二叉樹的所有路徑、404.左葉子之和、222.完全二叉樹的節點個數

LeetCode題目鏈接 https://leetcode.cn/problems/balanced-binary-tree/ https://leetcode.cn/problems/binary-tree-paths/ https://leetcode.cn/problems/sum-of-left-leaves/ https://leetcode.cn/problems/count-complete-tree-nodes/ 題解 110.平衡二叉樹想到用左子樹的高…

JVM新生代/老年代垃圾回收器、內存分配與回收策略

新生代垃圾收集器 1. Serial收集器 serial收集器即串行收集器&#xff0c;是一個單線程收集器。 串行收集器在進行垃圾回收時只使用一個CPU或一條收集線程去完成垃圾回收工作&#xff0c;并且會暫停其他的工作線程&#xff08;stop the world&#xff09;&#xff0c;直至回收完…

Unity Mirror 多人同步 基礎教程

Unity Mirror 多人同步 基礎教程MirrorNetworkManager&#xff08;網絡管理器&#xff09;Configuration&#xff1a;配置Auto-Start Options&#xff1a;自動啟動Scene Management&#xff1a;場景管理Network Info&#xff1a;網絡信息Authentication&#xff1a;身份驗證Pla…

基于紅尾鷹優化的LSTM深度學習網絡模型(RTH-LSTM)的一維時間序列預測算法matlab仿真

目錄 1.程序功能描述 2.測試軟件版本以及運行結果展示 3.部分程序 4.算法理論概述 5.完整程序 1.程序功能描述 紅尾鷹優化的LSTM&#xff08;RTH-LSTM&#xff09;算法&#xff0c;是將紅尾鷹優化算法&#xff08;Red-Tailed Hawk Optimization, RTHO&#xff09;與長短期…

深度學習“調參”黑話手冊:學習率、Batch Size、Epoch都是啥?

點擊 “AladdinEdu&#xff0c;同學們用得起的【H卡】算力平臺”&#xff0c;注冊即送-H卡級別算力&#xff0c;80G大顯存&#xff0c;按量計費&#xff0c;靈活彈性&#xff0c;頂級配置&#xff0c;學生更享專屬優惠。 引言&#xff1a;從"煉丹"到科學&#xff0c;…