題目
問題 7. 應用 9.1.4 小節描述的下降法,但針對二維的拉普拉斯方程,并從三維的 Coulomb 勢出發
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":33,"end":36},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":35},"text":"("}]}' after '\big' at position 34: …ac{1}{4\pi}\big{?(?}?x^2 + y^2 + z^2…
(4)
推導出二維的對數勢
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":37},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":35,"end":36},"text":"("}]}' after '\big' at position 35: …}{2\pi}\log\big{?(?}?x^2 + y^2\big{)…
(5)
提示: 你需要計算發散的積分 ∫0∞U3(x,y,z)dz \int_0^\infty U_3(x,y,z) dz ∫0∞?U3?(x,y,z)dz。作為替代,考慮 ∫0NU3(x,y,z)dz \int_0^N U_3(x,y,z) dz ∫0N?U3?(x,y,z)dz,減去一個常數(例如 ∫0NU3(1,0,z)dz \int_0^N U_3(1,0,z) dz ∫0N?U3?(1,0,z)dz),然后取極限 N→∞ N \to \infty N→∞。
注意: 在給定的 U2(x,y,z) U_2(x,y,z) U2?(x,y,z) 中,變量 z z z 是多余的,因為二維勢只依賴于 x x x 和 y y y,因此已修正為 U2(x,y) U_2(x,y) U2?(x,y)。
解答問題
下降法的核心思想是通過對額外維度(此處為 z z z 軸)積分,從高維(三維)拉普拉斯方程的基本解(Coulomb 勢)推導出低維(二維)的基本解(對數勢)。給定三維 Coulomb 勢:
U3(x,y,z)=?14π(x2+y2+z2)?1/2. U_3(x,y,z) = -\frac{1}{4\pi} (x^2 + y^2 + z^2)^{-1/2}. U3?(x,y,z)=?4π1?(x2+y2+z2)?1/2.
目標是推導二維對數勢:
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":36,"end":39},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":37,"end":38},"text":"("}]}' after '\big' at position 37: …2\pi} \log \big{?(?}? (x^2 + y^2)^{1…
直接積分 ∫?∞∞U3(x,y,z)dz \int_{-\infty}^{\infty} U_3(x,y,z) dz ∫?∞∞?U3?(x,y,z)dz 是發散的,因此需按提示進行正則化:考慮有限范圍 [0,N] [0, N] [0,N] 的積分,減去一個參考常數(例如在點 (1,0) (1,0) (1,0) 處的積分),然后取 N→∞ N \to \infty N→∞。然而,由于 U3 U_3 U3? 是偶函數(關于 z z z 對稱),為獲得正確的幅值,需考慮全對稱積分范圍 [?N,N] [-N, N] [?N,N](這相當于將提示中的半范圍積分乘以 2)。定義:
IN(x,y)=∫?NNU3(x,y,z)dz. I_N(x,y) = \int_{-N}^{N} U_3(x,y,z) dz. IN?(x,y)=∫?NN?U3?(x,y,z)dz.
令 r2=x2+y2 r^2 = x^2 + y^2 r2=x2+y2,則:
IN(x,y)=∫?NN?14π(r2+z2)?1/2dz. I_N(x,y) = \int_{-N}^{N} -\frac{1}{4\pi} (r^2 + z^2)^{-1/2} dz. IN?(x,y)=∫?NN??4π1?(r2+z2)?1/2dz.
被積函數是偶函數,因此:
IN(x,y)=?14π?2∫0N(r2+z2)?1/2dz=?12π∫0N(r2+z2)?1/2dz. I_N(x,y) = -\frac{1}{4\pi} \cdot 2 \int_{0}^{N} (r^2 + z^2)^{-1/2} dz = -\frac{1}{2\pi} \int_{0}^{N} (r^2 + z^2)^{-1/2} dz. IN?(x,y)=?4π1??2∫0N?(r2+z2)?1/2dz=?2π1?∫0N?(r2+z2)?1/2dz.
計算積分:
∫0N(r2+z2)?1/2dz=[log?(z+z2+r2)]0N=log?(N+N2+r2)?log?r. \int_{0}^{N} (r^2 + z^2)^{-1/2} dz = \left[ \log \left( z + \sqrt{z^2 + r^2} \right) \right]_{0}^{N} = \log \left( N + \sqrt{N^2 + r^2} \right) - \log r. ∫0N?(r2+z2)?1/2dz=[log(z+z2+r2?)]0N?=log(N+N2+r2?)?logr.
所以:
IN(x,y)=?12π[log?(N+N2+r2)?log?r]. I_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r \right]. IN?(x,y)=?2π1?[log(N+N2+r2?)?logr].
在參考點 (x,y)=(1,0) (x,y) = (1,0) (x,y)=(1,0)(即 r=1 r = 1 r=1):
IN(1,0)=?12π[log?(N+N2+1)?log?1]=?12πlog?(N+N2+1), I_N(1,0) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + 1} \right) - \log 1 \right] = -\frac{1}{2\pi} \log \left( N + \sqrt{N^2 + 1} \right), IN?(1,0)=?2π1?[log(N+N2+1?)?log1]=?2π1?log(N+N2+1?),
因為 log?1=0 \log 1 = 0 log1=0。
定義正則化后的勢:
VN(x,y)=IN(x,y)?IN(1,0). V_N(x,y) = I_N(x,y) - I_N(1,0). VN?(x,y)=IN?(x,y)?IN?(1,0).
代入表達式:
VN(x,y)=?12π[log?(N+N2+r2)?log?r]+12πlog?(N+N2+1). V_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r \right] + \frac{1}{2\pi} \log \left( N + \sqrt{N^2 + 1} \right). VN?(x,y)=?2π1?[log(N+N2+r2?)?logr]+2π1?log(N+N2+1?).
簡化:
VN(x,y)=?12π[log?(N+N2+r2)?log?r?log?(N+N2+1)]=?12π[log?(N+N2+r2N+N2+1)?log?r]. V_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r - \log \left( N + \sqrt{N^2 + 1} \right) \right] = -\frac{1}{2\pi} \left[ \log \left( \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} \right) - \log r \right]. VN?(x,y)=?2π1?[log(N+N2+r2?)?logr?log(N+N2+1?)]=?2π1?[log(N+N2+1?N+N2+r2??)?logr].
取極限 N→∞ N \to \infty N→∞。分析比值:
N+N2+r2N+N2+1. \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}}. N+N2+1?N+N2+r2??.
當 N→∞ N \to \infty N→∞,使用漸近展開 N2+a2=N1+(a/N)2=N(1+a22N2+O(N?4)) \sqrt{N^2 + a^2} = N \sqrt{1 + (a/N)^2} = N \left( 1 + \frac{a^2}{2N^2} + O(N^{-4}) \right) N2+a2?=N1+(a/N)2?=N(1+2N2a2?+O(N?4)),所以:
N+N2+r2=N+N(1+r22N2+O(N?4))=2N+r22N+O(N?3), N + \sqrt{N^2 + r^2} = N + N \left( 1 + \frac{r^2}{2N^2} + O(N^{-4}) \right) = 2N + \frac{r^2}{2N} + O(N^{-3}), N+N2+r2?=N+N(1+2N2r2?+O(N?4))=2N+2Nr2?+O(N?3),
N+N2+1=2N+12N+O(N?3). N + \sqrt{N^2 + 1} = 2N + \frac{1}{2N} + O(N^{-3}). N+N2+1?=2N+2N1?+O(N?3).
因此:
N+N2+r2N+N2+1=2N+r22N+O(N?3)2N+12N+O(N?3)=1+r24N2+O(N?4)1+14N2+O(N?4)=1+r2?14N2+O(N?4). \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} = \frac{2N + \frac{r^2}{2N} + O(N^{-3})}{2N + \frac{1}{2N} + O(N^{-3})} = \frac{1 + \frac{r^2}{4N^2} + O(N^{-4})}{1 + \frac{1}{4N^2} + O(N^{-4})} = 1 + \frac{r^2 - 1}{4N^2} + O(N^{-4}). N+N2+1?N+N2+r2??=2N+2N1?+O(N?3)2N+2Nr2?+O(N?3)?=1+4N21?+O(N?4)1+4N2r2?+O(N?4)?=1+4N2r2?1?+O(N?4).
取對數:
log?(N+N2+r2N+N2+1)=log?(1+r2?14N2+O(N?4))=r2?14N2+O(N?4)→0asN→∞. \log \left( \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} \right) = \log \left( 1 + \frac{r^2 - 1}{4N^2} + O(N^{-4}) \right) = \frac{r^2 - 1}{4N^2} + O(N^{-4}) \to 0 \quad \text{as} \quad N \to \infty. log(N+N2+1?N+N2+r2??)=log(1+4N2r2?1?+O(N?4))=4N2r2?1?+O(N?4)→0asN→∞.
所以:
lim?N→∞VN(x,y)=?12π[0?log?r]=12πlog?r. \lim_{N \to \infty} V_N(x,y) = -\frac{1}{2\pi} \left[ 0 - \log r \right] = \frac{1}{2\pi} \log r. N→∞lim?VN?(x,y)=?2π1?[0?logr]=2π1?logr.
這正是二維對數勢:
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log r = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":60,"end":63},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log r = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":61,"end":62},"text":"("}]}' after '\big' at position 61: …2\pi} \log \big{?(?}? (x^2 + y^2)^{1…
總結
通過下降法,從三維 Coulomb 勢 U3(x,y,z)=?14π(x2+y2+z2)?1/2 U_3(x,y,z) = -\frac{1}{4\pi} (x^2 + y^2 + z^2)^{-1/2} U3?(x,y,z)=?4π1?(x2+y2+z2)?1/2 出發,考慮對稱積分范圍 [?N,N] [-N, N] [?N,N],正則化后取極限 N→∞ N \to \infty N→∞,成功推導出二維對數勢 KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":36,"end":39},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":37,"end":38},"text":"("}]}' after '\big' at position 37: …2\pi} \log \big{?(?}? (x^2 + y^2)^{1…。正則化步驟通過減去參考點 (1,0) (1,0) (1,0) 處的積分消除了發散項,確保了極限收斂。