從三維Coulomb勢到二維對數勢的下降法推導

在這里插入圖片描述

題目

問題 7. 應用 9.1.4 小節描述的下降法,但針對二維的拉普拉斯方程,并從三維的 Coulomb 勢出發
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":33,"end":36},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_3(x,y,z) = -\\frac{1}{4\\pi}\\big{(}x^2 + y^2 + z^2\\big{)}^{-\\frac{1}{2}}, ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":35},"text":"("}]}' after '\big' at position 34: …ac{1}{4\pi}\big{?(?}?x^2 + y^2 + z^2…
(4)
推導出二維的對數勢
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":34,"end":37},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi}\\log\\big{(}x^2 + y^2\\big{)}^{\\frac{1}{2}}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":35,"end":36},"text":"("}]}' after '\big' at position 35: …}{2\pi}\log\big{?(?}?x^2 + y^2\big{)…
(5)
提示: 你需要計算發散的積分 ∫0∞U3(x,y,z)dz \int_0^\infty U_3(x,y,z) dz 0?U3?(x,y,z)dz。作為替代,考慮 ∫0NU3(x,y,z)dz \int_0^N U_3(x,y,z) dz 0N?U3?(x,y,z)dz,減去一個常數(例如 ∫0NU3(1,0,z)dz \int_0^N U_3(1,0,z) dz 0N?U3?(1,0,z)dz),然后取極限 N→∞ N \to \infty N

注意: 在給定的 U2(x,y,z) U_2(x,y,z) U2?(x,y,z) 中,變量 z z z 是多余的,因為二維勢只依賴于 x x xy y y,因此已修正為 U2(x,y) U_2(x,y) U2?(x,y)

解答問題

下降法的核心思想是通過對額外維度(此處為 z z z 軸)積分,從高維(三維)拉普拉斯方程的基本解(Coulomb 勢)推導出低維(二維)的基本解(對數勢)。給定三維 Coulomb 勢:
U3(x,y,z)=?14π(x2+y2+z2)?1/2. U_3(x,y,z) = -\frac{1}{4\pi} (x^2 + y^2 + z^2)^{-1/2}. U3?(x,y,z)=?4π1?(x2+y2+z2)?1/2.
目標是推導二維對數勢:
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":36,"end":39},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} = \\frac{1}{2\\pi} \\log r, \\quad \\text{其中} \\quad r = \\sqrt{x^2 + y^2}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":37,"end":38},"text":"("}]}' after '\big' at position 37: …2\pi} \log \big{?(?}? (x^2 + y^2)^{1…

直接積分 ∫?∞∞U3(x,y,z)dz \int_{-\infty}^{\infty} U_3(x,y,z) dz ??U3?(x,y,z)dz 是發散的,因此需按提示進行正則化:考慮有限范圍 [0,N] [0, N] [0,N] 的積分,減去一個參考常數(例如在點 (1,0) (1,0) (1,0) 處的積分),然后取 N→∞ N \to \infty N。然而,由于 U3 U_3 U3? 是偶函數(關于 z z z 對稱),為獲得正確的幅值,需考慮全對稱積分范圍 [?N,N] [-N, N] [?N,N](這相當于將提示中的半范圍積分乘以 2)。定義:
IN(x,y)=∫?NNU3(x,y,z)dz. I_N(x,y) = \int_{-N}^{N} U_3(x,y,z) dz. IN?(x,y)=?NN?U3?(x,y,z)dz.
r2=x2+y2 r^2 = x^2 + y^2 r2=x2+y2,則:
IN(x,y)=∫?NN?14π(r2+z2)?1/2dz. I_N(x,y) = \int_{-N}^{N} -\frac{1}{4\pi} (r^2 + z^2)^{-1/2} dz. IN?(x,y)=?NN??4π1?(r2+z2)?1/2dz.
被積函數是偶函數,因此:
IN(x,y)=?14π?2∫0N(r2+z2)?1/2dz=?12π∫0N(r2+z2)?1/2dz. I_N(x,y) = -\frac{1}{4\pi} \cdot 2 \int_{0}^{N} (r^2 + z^2)^{-1/2} dz = -\frac{1}{2\pi} \int_{0}^{N} (r^2 + z^2)^{-1/2} dz. IN?(x,y)=?4π1??20N?(r2+z2)?1/2dz=?2π1?0N?(r2+z2)?1/2dz.
計算積分:
∫0N(r2+z2)?1/2dz=[log?(z+z2+r2)]0N=log?(N+N2+r2)?log?r. \int_{0}^{N} (r^2 + z^2)^{-1/2} dz = \left[ \log \left( z + \sqrt{z^2 + r^2} \right) \right]_{0}^{N} = \log \left( N + \sqrt{N^2 + r^2} \right) - \log r. 0N?(r2+z2)?1/2dz=[log(z+z2+r2?)]0N?=log(N+N2+r2?)?logr.
所以:
IN(x,y)=?12π[log?(N+N2+r2)?log?r]. I_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r \right]. IN?(x,y)=?2π1?[log(N+N2+r2?)?logr].
在參考點 (x,y)=(1,0) (x,y) = (1,0) (x,y)=(1,0)(即 r=1 r = 1 r=1):
IN(1,0)=?12π[log?(N+N2+1)?log?1]=?12πlog?(N+N2+1), I_N(1,0) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + 1} \right) - \log 1 \right] = -\frac{1}{2\pi} \log \left( N + \sqrt{N^2 + 1} \right), IN?(1,0)=?2π1?[log(N+N2+1?)?log1]=?2π1?log(N+N2+1?),
因為 log?1=0 \log 1 = 0 log1=0

定義正則化后的勢:
VN(x,y)=IN(x,y)?IN(1,0). V_N(x,y) = I_N(x,y) - I_N(1,0). VN?(x,y)=IN?(x,y)?IN?(1,0).
代入表達式:
VN(x,y)=?12π[log?(N+N2+r2)?log?r]+12πlog?(N+N2+1). V_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r \right] + \frac{1}{2\pi} \log \left( N + \sqrt{N^2 + 1} \right). VN?(x,y)=?2π1?[log(N+N2+r2?)?logr]+2π1?log(N+N2+1?).
簡化:
VN(x,y)=?12π[log?(N+N2+r2)?log?r?log?(N+N2+1)]=?12π[log?(N+N2+r2N+N2+1)?log?r]. V_N(x,y) = -\frac{1}{2\pi} \left[ \log \left( N + \sqrt{N^2 + r^2} \right) - \log r - \log \left( N + \sqrt{N^2 + 1} \right) \right] = -\frac{1}{2\pi} \left[ \log \left( \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} \right) - \log r \right]. VN?(x,y)=?2π1?[log(N+N2+r2?)?logr?log(N+N2+1?)]=?2π1?[log(N+N2+1?N+N2+r2??)?logr].

取極限 N→∞ N \to \infty N。分析比值:
N+N2+r2N+N2+1. \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}}. N+N2+1?N+N2+r2??.
N→∞ N \to \infty N,使用漸近展開 N2+a2=N1+(a/N)2=N(1+a22N2+O(N?4)) \sqrt{N^2 + a^2} = N \sqrt{1 + (a/N)^2} = N \left( 1 + \frac{a^2}{2N^2} + O(N^{-4}) \right) N2+a2?=N1+(a/N)2?=N(1+2N2a2?+O(N?4)),所以:
N+N2+r2=N+N(1+r22N2+O(N?4))=2N+r22N+O(N?3), N + \sqrt{N^2 + r^2} = N + N \left( 1 + \frac{r^2}{2N^2} + O(N^{-4}) \right) = 2N + \frac{r^2}{2N} + O(N^{-3}), N+N2+r2?=N+N(1+2N2r2?+O(N?4))=2N+2Nr2?+O(N?3),
N+N2+1=2N+12N+O(N?3). N + \sqrt{N^2 + 1} = 2N + \frac{1}{2N} + O(N^{-3}). N+N2+1?=2N+2N1?+O(N?3).
因此:
N+N2+r2N+N2+1=2N+r22N+O(N?3)2N+12N+O(N?3)=1+r24N2+O(N?4)1+14N2+O(N?4)=1+r2?14N2+O(N?4). \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} = \frac{2N + \frac{r^2}{2N} + O(N^{-3})}{2N + \frac{1}{2N} + O(N^{-3})} = \frac{1 + \frac{r^2}{4N^2} + O(N^{-4})}{1 + \frac{1}{4N^2} + O(N^{-4})} = 1 + \frac{r^2 - 1}{4N^2} + O(N^{-4}). N+N2+1?N+N2+r2??=2N+2N1?+O(N?3)2N+2Nr2?+O(N?3)?=1+4N21?+O(N?4)1+4N2r2?+O(N?4)?=1+4N2r2?1?+O(N?4).
取對數:
log?(N+N2+r2N+N2+1)=log?(1+r2?14N2+O(N?4))=r2?14N2+O(N?4)→0asN→∞. \log \left( \frac{N + \sqrt{N^2 + r^2}}{N + \sqrt{N^2 + 1}} \right) = \log \left( 1 + \frac{r^2 - 1}{4N^2} + O(N^{-4}) \right) = \frac{r^2 - 1}{4N^2} + O(N^{-4}) \to 0 \quad \text{as} \quad N \to \infty. log(N+N2+1?N+N2+r2??)=log(1+4N2r2?1?+O(N?4))=4N2r2?1?+O(N?4)0asN.
所以:
lim?N→∞VN(x,y)=?12π[0?log?r]=12πlog?r. \lim_{N \to \infty} V_N(x,y) = -\frac{1}{2\pi} \left[ 0 - \log r \right] = \frac{1}{2\pi} \log r. Nlim?VN?(x,y)=?2π1?[0?logr]=2π1?logr.
這正是二維對數勢:
KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log r = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":60,"end":63},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log r = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)}. ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":61,"end":62},"text":"("}]}' after '\big' at position 61: …2\pi} \log \big{?(?}? (x^2 + y^2)^{1…

總結

通過下降法,從三維 Coulomb 勢 U3(x,y,z)=?14π(x2+y2+z2)?1/2 U_3(x,y,z) = -\frac{1}{4\pi} (x^2 + y^2 + z^2)^{-1/2} U3?(x,y,z)=?4π1?(x2+y2+z2)?1/2 出發,考慮對稱積分范圍 [?N,N] [-N, N] [?N,N],正則化后取極限 N→∞ N \to \infty N,成功推導出二維對數勢 KaTeX parse error: Invalid delimiter: '{"type":"ordgroup","mode":"math","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":36,"end":39},"body":[{"type":"atom","mode":"math","family":"open","loc":{"lexer":{"input":" U_2(x,y) = \\frac{1}{2\\pi} \\log \\big{(} (x^2 + y^2)^{1/2} \\big{)} ","settings":{"displayMode":true,"leqno":false,"fleqn":false,"throwOnError":true,"errorColor":"#cc0000","macros":{},"colorIsTextColor":false,"strict":"warn","maxSize":null,"maxExpand":1000,"allowedProtocols":["http","https","mailto","_relative"]},"tokenRegex":{},"catcodes":{"%":14}},"start":37,"end":38},"text":"("}]}' after '\big' at position 37: …2\pi} \log \big{?(?}? (x^2 + y^2)^{1…。正則化步驟通過減去參考點 (1,0) (1,0) (1,0) 處的積分消除了發散項,確保了極限收斂。

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/bicheng/90759.shtml
繁體地址,請注明出處:http://hk.pswp.cn/bicheng/90759.shtml
英文地址,請注明出處:http://en.pswp.cn/bicheng/90759.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

直播一體機技術方案解析:基于RK3588S的硬件架構特性?

硬件配置??主控平臺??? 搭載瑞芯微RK3588S旗艦處理器(四核A762.4GHz 四核A55)? 集成ARM Mali-G610 MP4 GPU 6TOPS算力NPU? 雙通道LPDDR5內存 UFS3.1存儲組合??專用加速單元??→ 板載視頻采集模塊:支持4K60fps HDMI環出采集→ 集…

【氮化鎵】GaN取代GaAs作為空間激光無線能量傳輸光伏轉換器材料

2025年7月1日,西班牙圣地亞哥-德孔波斯特拉大學的Javier F. Lozano等人在《Optics and Laser Technology》期刊發表了題為《Gallium nitride: a strong candidate to replace GaAs as base material for optical photovoltaic converters in space exploration》的文章,基于T…

直播美顏SDK動態貼紙模塊開發指南:從人臉關鍵點識別到3D貼合

很多美顏技術開發者好奇,如何在直播美顏SDK中實現一個高質量的動態貼紙模塊?這不是簡單地“貼圖貼臉”,而是一個融合人臉關鍵點識別、實時渲染、貼紙驅動邏輯、3D骨骼動畫與跨平臺性能優化的系統工程。今天,就讓我們從底層技術出發…

學習游戲制作記錄(劍投擲技能)7.26

1.實現瞄準狀態和接劍狀態準備好瞄準動畫,投擲動畫和接劍動畫,并設置參數AimSword和CatchSword投擲動畫在瞄準動畫后,瞄準結束后才能投擲創建PlayerAimSwordState腳本和PlayerCatchSwordState腳本并在Player中初始化:PlayerAimSwo…

【c++】問答系統代碼改進解析:新增日志系統提升可維護性——關于我用AI編寫了一個聊天機器人……(14)

在軟件開發中,代碼的迭代優化往往從提升可維護性、可追蹤性入手。本文將詳細解析新增的日志系統改進,以及這些改進如何提升系統的實用性和可調試性。一、代碼整體背景代碼實現了一個基于 TF-IDF 算法的問答系統,核心功能包括:加載…

visual studio2022編譯unreal engine5.4.4源碼

UE5系列文章目錄 文章目錄 UE5系列文章目錄 前言 一、ue5官網 二.編譯源碼中遇到的問題 前言 一、ue5官網 UE5官網 UE5源碼下載地址 這樣雖然下載比較快,但是不能進行代碼git管理,以后如何虛幻官方有大的版本變動需要重新下載源碼,所以我們還是最好需要visual studio2022…

vulhub Earth靶場攻略

靶場下載 下載鏈接:https://download.vulnhub.com/theplanets/Earth.ova 靶場使用 將壓縮包解壓到一個文件夾中,右鍵,用虛擬機打開,就創建成功了,然后啟動虛擬機: 這時候靶場已經啟動了,咱們現…

Python訓練Day24

浙大疏錦行 元組可迭代對象os模塊

Spring核心:Bean生命周期、外部化配置與組件掃描深度解析

Bean生命周期 說明 程序中的每個對象都有生命周期,對象的創建、初始化、應用、銷毀的整個過程稱之為對象的生命周期; 在對象創建以后需要初始化,應用完成以后需要銷毀時執行的一些方法,可以稱之為是生命周期方法; 在sp…

日語學習-日語知識點小記-進階-JLPT-真題訓練-N1階段(1):2017年12月-JLPT-N1

日語學習-日語知識點小記-進階-JLPT-真題訓練-N1階段(1):2017年12月-JLPT-N1 1、前言(1)情況說明(2)工程師的信仰(3)真題訓練2、真題-2017年12月-JLPT-N1(1&a…

(一)使用 LangChain 從零開始構建 RAG 系統|RAG From Scratch

RAG 的主要動機 大模型訓練的時候雖然使用了龐大的世界數據,但是并沒有涵蓋用戶關心的所有數據, 其預訓練令牌(token)數量雖大但相對這些數據仍有限。另外大模型輸入的上下文窗口越來越大,從幾千個token到幾萬個token,…

OpenCV學習探秘之一 :了解opencv技術及架構解析、數據結構與內存管理?等基礎

?一、OpenCV概述與技術演進? 1.1技術歷史? OpenCV(Open Source Computer Vision Library)是由Intel于1999年發起創建的開源計算機視覺庫,后來交由OpenCV開源社區維護,旨在為計算機視覺應用提供通用基礎設施。經歷20余年發展&…

什么是JUC

摘要 Java并發工具包JUC是JDK5.0引入的重要并發編程工具,提供了更高級、靈活的并發控制機制。JUC包含鎖與同步器(如ReentrantLock、Semaphore等)、線程安全隊列(BlockingQueue)、原子變量(AtomicInteger等…

零基礎學后端-PHP語言(第二期-PHP基礎語法)(通過php內置服務器運行php文件)

經過上期的配置,我們已經有了php的開發環境,編輯器我們繼續使用VScode,如果是新來的朋友可以看這期文章來配置VScode 零基礎學前端-傳統前端開發(第一期-開發軟件介紹與本系列目標)(VScode安裝教程&#x…

擴散模型逆向過程詳解:如何從噪聲中恢復數據?

在擴散模型中,逆向過程的目標是從噪聲數據逐步恢復出原始數據。本文將詳細解析逆向條件分布 q(zt?1∣zt,x)q(\mathbf{z}_{t-1} \mid \mathbf{z}_t, \mathbf{x})q(zt?1?∣zt?,x)的推導過程,揭示擴散模型如何通過高斯分布實現數據重建。1. 核心問題 在…

2025年7月份實時最新獲取地圖邊界數據方法,省市區縣街道多級聯動【文末附實時geoJson數據下載】

動態生成最新行政區劃 GeoJSON 數據并結合 ECharts 實現地圖下鉆功能 在開發基于地圖的數據可視化應用時,一個常見的挑戰是獲取準確且最新的行政區劃邊界數據(GeoJSON)。許多現有的在線資源可能數據陳舊,無法反映最新的行政區劃調…

Spark實現WorldCount執行流程圖

spark可以分區并行執行,同時并行執行也可以基于內存完成迭代代碼對于大部分spark程序來說都是以driver開始driver結束,中間都是executor分布式運行

編程與數學 03-002 計算機網絡 02_網絡體系結構與協議

編程與數學 03-002 計算機網絡 02_網絡體系結構與協議一、網絡體系結構的基本概念(一)分層體系結構的優點(二)協議、接口與服務的概念二、OSI參考模型(一)七層模型的層次劃分及功能(二&#xff…

Flutter 提取圖像主色調 ColorScheme.fromImageProvider

從圖像中提取主色調,用于動態適配顏色主題或者界面顏色。之前在 Flutter 應用里一直用的 palette_generator 插件,可以分析圖像顏色,從中提取一系列主要的色調。最近發現這個谷歌官方的插件竟然不維護了,后續沒有更新計劃了。 查找…

51c自動駕駛~合集8

自己的原文哦~ https://blog.51cto.com/whaosoft/11618683 #Hierarchical BEV BEV進入定制化時代!清華Hierarchical BEV:創新多模塊學習框架,無痛落地無縫量產!? 論文思路 自動駕駛指通過傳感器計算設備、信息通信、自…