rt-linux下的D狀態的堆棧抓取及TASK_RTLOCK_WAIT狀態

一、背景

在之前的博客?缺頁異常導致的iowait打印出相關文件的絕對路徑-CSDN博客 里的 2.1 一節里的代碼,我們已經有了一個比較強大的抓取D狀態和等IO狀態超過閾值的waker和wakee的堆棧狀態的內核模塊。在之前的博客?增加等IO狀態的喚醒堆棧打印及缺頁異常導致iowait分析-CSDN博客 里的 2.3 一節,我們也針對了一些特殊的情況,即在in_iowait狀態下的非TASK_UNINTERRUPTIBLE狀態的情況也考慮到并進行了超閾值的堆棧打印:

對于iowait的情形,這樣的監控程序和上面提到的考慮已經是足夠了,針對iowait情形,我們還打印了waker和wakee的堆棧。而對于D狀態的超時而言,我們當前的程序并沒有覆蓋全場景,我們并沒有打印D狀態的waker堆棧,我們也沒有考慮TASK_UNINTERRUPTIBLE這個bit是1但是其他bit也是1的情況。另外,在這篇博客里,我們也會講到,對于rt-linux內核而言,還有一種特殊的D狀態,即TASK_RTLOCK_WAIT狀態,這個TASK_RTLOCK_WAIT狀態在rt-linux里也是一個很普遍存在的情況,不抓取這樣的情況就漏了很多D狀態

下面第二章里,我們給出更新后的源碼(源碼里去掉iowait的抓取,因為iowait的抓取之前的程序已經足夠了,這篇博客只關注rt-linux下的D狀態的抓取,注意這里說的D狀態是一個廣義的D狀態,即在perfetto里顯示出是D狀態那就被視為是D狀態,并不應該理解成是__state == TASK_UNINTERRUPTIBLE,也不應該理解成是__state的里TASK_UNINTERRUPTIBLE的mask是TASK_UNINTERRUPTIBLE,具體在下面第三章里展開說明)。

然后在第三章里,我們講解這次源碼的改動的部分和與TASK_RTLOCK_WAIT相關的細節。

二、源碼及抓取效果

2.1 源碼

#include <linux/module.h>
#include <linux/capability.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/proc_fs.h>
#include <linux/ctype.h>
#include <linux/seq_file.h>
#include <linux/poll.h>
#include <linux/types.h>
#include <linux/ioctl.h>
#include <linux/errno.h>
#include <linux/stddef.h>
#include <linux/lockdep.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/init.h>
#include <asm/atomic.h>
#include <trace/events/workqueue.h>
#include <linux/sched/clock.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/tracepoint.h>
#include <trace/events/osmonitor.h>
#include <trace/events/sched.h>
#include <trace/events/irq.h>
#include <trace/events/kmem.h>
#include <linux/ptrace.h>
#include <linux/uaccess.h>
#include <asm/processor.h>
#include <linux/sched/task_stack.h>
#include <linux/nmi.h>
#include <linux/version.h>
#include <linux/sched/mm.h>
#include <asm/irq_regs.h>
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/stop_machine.h>MODULE_LICENSE("GPL");
MODULE_AUTHOR("zhaoxin");
MODULE_DESCRIPTION("Module for monitor D tasks.");
MODULE_VERSION("1.0");static unsigned long ns = 5000000ull;module_param(ns, ulong, S_IRUGO);
MODULE_PARM_DESC(ns, "threshold nano second");#define IODELAY_TRACEPOINT_ENABLE#define TEST_STACK_TRACE_ENTRIES   32typedef unsigned int (*stack_trace_save_tsk_func)(struct task_struct *task,unsigned long *store, unsigned int size,unsigned int skipnr);
stack_trace_save_tsk_func _stack_trace_save_tsk;typedef int (*get_cmdline_func)(struct task_struct *task, char *buffer, int buflen);
get_cmdline_func _get_cmdline_func;#define TESTDIOMONITOR_SAMPLEDESC_SWDSTART  "swDstart"
#define TESTDIOMONITOR_SAMPLEDESC_WADSTOP    "waDstop"
#define TESTDIOMONITOR_SAMPLEDESC_SWDIOSTART "swDiostart"
#define TESTDIOMONITOR_SAMPLEDESC_WADIOSTOP  "waDiostop"
#define TESTDIOMONITOR_SAMPLEDESC_DEXCEED    "Dexceed"
#define TESTDIOMONITOR_SAMPLEDESC_DIOEXCEED  "Dioexceed"
#define TESTDIOMONITOR_SAMPLEDESC_IOEXCEED   "Ioexceed"#define TESTDIOMONITOR_SIMPLE#ifdef TESTDIOMONITOR_SIMPLE
#define TESTDIOMONITOR_SIMPLE_THRESHOLDNS   (ns)//5000000ull
#endif// 1ms
//#define TESTDIOMONITOR_DEXCEED_THRESHOLD     1000ull//1000000ull#ifdef CONFIG_UCLAMP_TASK
struct uclamp_bucket {unsigned long value : bits_per(SCHED_CAPACITY_SCALE);unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
};struct uclamp_rq {unsigned int value;struct uclamp_bucket bucket[UCLAMP_BUCKETS];
};
#endif/* CFS-related fields in a runqueue */
struct cfs_rq {struct load_weight	load;unsigned int		nr_running;unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */unsigned int		idle_nr_running;   /* SCHED_IDLE */unsigned int		idle_h_nr_running; /* SCHED_IDLE */u64			exec_clock;u64			min_vruntime;
#ifdef CONFIG_SCHED_COREunsigned int		forceidle_seq;u64			min_vruntime_fi;
#endif#ifndef CONFIG_64BITu64			min_vruntime_copy;
#endifstruct rb_root_cached	tasks_timeline;/** 'curr' points to currently running entity on this cfs_rq.* It is set to NULL otherwise (i.e when none are currently running).*/struct sched_entity	*curr;struct sched_entity	*next;struct sched_entity	*last;struct sched_entity	*skip;#ifdef	CONFIG_SCHED_DEBUGunsigned int		nr_spread_over;
#endif#ifdef CONFIG_SMP/** CFS load tracking*/struct sched_avg	avg;
#ifndef CONFIG_64BITu64			last_update_time_copy;
#endifstruct {raw_spinlock_t	lock ____cacheline_aligned;int		nr;unsigned long	load_avg;unsigned long	util_avg;unsigned long	runnable_avg;} removed;#ifdef CONFIG_FAIR_GROUP_SCHEDunsigned long		tg_load_avg_contrib;long			propagate;long			prop_runnable_sum;/**   h_load = weight * f(tg)** Where f(tg) is the recursive weight fraction assigned to* this group.*/unsigned long		h_load;u64			last_h_load_update;struct sched_entity	*h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
#endif /* CONFIG_SMP */#ifdef CONFIG_FAIR_GROUP_SCHEDstruct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached *//** leaf cfs_rqs are those that hold tasks (lowest schedulable entity in* a hierarchy). Non-leaf lrqs hold other higher schedulable entities* (like users, containers etc.)** leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.* This list is used during load balance.*/int			on_list;struct list_head	leaf_cfs_rq_list;struct task_group	*tg;	/* group that "owns" this runqueue *//* Locally cached copy of our task_group's idle value */int			idle;#ifdef CONFIG_CFS_BANDWIDTHint			runtime_enabled;s64			runtime_remaining;u64			throttled_pelt_idle;
#ifndef CONFIG_64BITu64                     throttled_pelt_idle_copy;
#endifu64			throttled_clock;u64			throttled_clock_pelt;u64			throttled_clock_pelt_time;int			throttled;int			throttle_count;struct list_head	throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};/** This is the priority-queue data structure of the RT scheduling class:*/
struct rt_prio_array {DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */struct list_head queue[MAX_RT_PRIO];
};/* Real-Time classes' related field in a runqueue: */
struct rt_rq {struct rt_prio_array	active;unsigned int		rt_nr_running;unsigned int		rr_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHEDstruct {int		curr; /* highest queued rt task prio */
#ifdef CONFIG_SMPint		next; /* next highest */
#endif} highest_prio;
#endif
#ifdef CONFIG_SMPunsigned int		rt_nr_migratory;unsigned int		rt_nr_total;int			overloaded;struct plist_head	pushable_tasks;#endif /* CONFIG_SMP */int			rt_queued;int			rt_throttled;u64			rt_time;u64			rt_runtime;/* Nests inside the rq lock: */raw_spinlock_t		rt_runtime_lock;#ifdef CONFIG_RT_GROUP_SCHEDunsigned int		rt_nr_boosted;struct rq		*rq;struct task_group	*tg;
#endif
};/* Deadline class' related fields in a runqueue */
struct dl_rq {/* runqueue is an rbtree, ordered by deadline */struct rb_root_cached	root;unsigned int		dl_nr_running;#ifdef CONFIG_SMP/** Deadline values of the currently executing and the* earliest ready task on this rq. Caching these facilitates* the decision whether or not a ready but not running task* should migrate somewhere else.*/struct {u64		curr;u64		next;} earliest_dl;unsigned int		dl_nr_migratory;int			overloaded;/** Tasks on this rq that can be pushed away. They are kept in* an rb-tree, ordered by tasks' deadlines, with caching* of the leftmost (earliest deadline) element.*/struct rb_root_cached	pushable_dl_tasks_root;
#elsestruct dl_bw		dl_bw;
#endif/** "Active utilization" for this runqueue: increased when a* task wakes up (becomes TASK_RUNNING) and decreased when a* task blocks*/u64			running_bw;/** Utilization of the tasks "assigned" to this runqueue (including* the tasks that are in runqueue and the tasks that executed on this* CPU and blocked). Increased when a task moves to this runqueue, and* decreased when the task moves away (migrates, changes scheduling* policy, or terminates).* This is needed to compute the "inactive utilization" for the* runqueue (inactive utilization = this_bw - running_bw).*/u64			this_bw;u64			extra_bw;/** Inverse of the fraction of CPU utilization that can be reclaimed* by the GRUB algorithm.*/u64			bw_ratio;
};/** This is the main, per-CPU runqueue data structure.** Locking rule: those places that want to lock multiple runqueues* (such as the load balancing or the thread migration code), lock* acquire operations must be ordered by ascending &runqueue.*/
struct rq {/* runqueue lock: */raw_spinlock_t		__lock;/** nr_running and cpu_load should be in the same cacheline because* remote CPUs use both these fields when doing load calculation.*/unsigned int		nr_running;
#ifdef CONFIG_NUMA_BALANCINGunsigned int		nr_numa_running;unsigned int		nr_preferred_running;unsigned int		numa_migrate_on;
#endif
#ifdef CONFIG_NO_HZ_COMMON
#ifdef CONFIG_SMPunsigned long		last_blocked_load_update_tick;unsigned int		has_blocked_load;call_single_data_t	nohz_csd;
#endif /* CONFIG_SMP */unsigned int		nohz_tick_stopped;atomic_t		nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */#ifdef CONFIG_SMPunsigned int		ttwu_pending;
#endifu64			nr_switches;#ifdef CONFIG_UCLAMP_TASK/* Utilization clamp values based on CPU's RUNNABLE tasks */struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;unsigned int		uclamp_flags;
#define UCLAMP_FLAG_IDLE 0x01
#endifstruct cfs_rq		cfs;struct rt_rq		rt;struct dl_rq		dl;#ifdef CONFIG_FAIR_GROUP_SCHED/* list of leaf cfs_rq on this CPU: */struct list_head	leaf_cfs_rq_list;struct list_head	*tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED *//** This is part of a global counter where only the total sum* over all CPUs matters. A task can increase this counter on* one CPU and if it got migrated afterwards it may decrease* it on another CPU. Always updated under the runqueue lock:*/unsigned int		nr_uninterruptible;struct task_struct __rcu	*curr;struct task_struct	*idle;struct task_struct	*stop;unsigned long		next_balance;struct mm_struct	*prev_mm;unsigned int		clock_update_flags;u64			clock;/* Ensure that all clocks are in the same cache line */u64			clock_task ____cacheline_aligned;u64			clock_pelt;unsigned long		lost_idle_time;u64			clock_pelt_idle;u64			clock_idle;
#ifndef CONFIG_64BITu64			clock_pelt_idle_copy;u64			clock_idle_copy;
#endifatomic_t		nr_iowait;#ifdef CONFIG_SCHED_DEBUGu64 last_seen_need_resched_ns;int ticks_without_resched;
#endif#ifdef CONFIG_MEMBARRIERint membarrier_state;
#endif#ifdef CONFIG_SMPstruct root_domain		*rd;struct sched_domain __rcu	*sd;unsigned long		cpu_capacity;unsigned long		cpu_capacity_orig;struct balance_callback *balance_callback;unsigned char		nohz_idle_balance;unsigned char		idle_balance;unsigned long		misfit_task_load;/* For active balancing */int			active_balance;int			push_cpu;struct cpu_stop_work	active_balance_work;/* CPU of this runqueue: */int			cpu;int			online;struct list_head cfs_tasks;struct sched_avg	avg_rt;struct sched_avg	avg_dl;
#ifdef CONFIG_HAVE_SCHED_AVG_IRQstruct sched_avg	avg_irq;
#endif
#ifdef CONFIG_SCHED_THERMAL_PRESSUREstruct sched_avg	avg_thermal;
#endifu64			idle_stamp;u64			avg_idle;unsigned long		wake_stamp;u64			wake_avg_idle;/* This is used to determine avg_idle's max value */u64			max_idle_balance_cost;#ifdef CONFIG_HOTPLUG_CPUstruct rcuwait		hotplug_wait;
#endif
#endif /* CONFIG_SMP */#ifdef CONFIG_IRQ_TIME_ACCOUNTINGu64			prev_irq_time;u64			psi_irq_time;
#endif
#ifdef CONFIG_PARAVIRTu64			prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTINGu64			prev_steal_time_rq;
#endif/* calc_load related fields */unsigned long		calc_load_update;long			calc_load_active;#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMPcall_single_data_t	hrtick_csd;
#endifstruct hrtimer		hrtick_timer;ktime_t 		hrtick_time;
#endif#ifdef CONFIG_SCHEDSTATS/* latency stats */struct sched_info	rq_sched_info;unsigned long long	rq_cpu_time;/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? *//* sys_sched_yield() stats */unsigned int		yld_count;/* schedule() stats */unsigned int		sched_count;unsigned int		sched_goidle;/* try_to_wake_up() stats */unsigned int		ttwu_count;unsigned int		ttwu_local;
#endif#ifdef CONFIG_CPU_IDLE/* Must be inspected within a rcu lock section */struct cpuidle_state	*idle_state;
#endif#ifdef CONFIG_SMPunsigned int		nr_pinned;
#endifunsigned int		push_busy;struct cpu_stop_work	push_work;#ifdef CONFIG_SCHED_CORE/* per rq */struct rq		*core;struct task_struct	*core_pick;unsigned int		core_enabled;unsigned int		core_sched_seq;struct rb_root		core_tree;/* shared state -- careful with sched_core_cpu_deactivate() */unsigned int		core_task_seq;unsigned int		core_pick_seq;unsigned long		core_cookie;unsigned int		core_forceidle_count;unsigned int		core_forceidle_seq;unsigned int		core_forceidle_occupation;u64			core_forceidle_start;
#endif
};// runqueues (not export symbol)
struct rq* _prq = NULL;struct rq* my_cpu_rq(int i_cpu)
{return per_cpu_ptr(_prq, i_cpu);
}u64 my_rq_clock_task(void)
{struct rq* prq = my_cpu_rq(smp_processor_id());return prq->clock_task;
}#define TESTDIOMONITOR_FILE_MAXLEN  1024typedef struct testdiomonitor_sample {struct timespec64 time;int cpu;int pid;int tgid;int ppid;char comm[TASK_COMM_LEN];char ppidcomm[TASK_COMM_LEN];// 0 or 1int bin_iowait;/** "swDstart" // 在sched_switch里* "waDstop"  // 在sched_waking里* "swDiostart" // 在sched_switch里* "waDiostop"  // 在sched_waking里* "Dexceed"    // 超出閾值,非iowait* "Dioexceed"  // 超出閾值,iowait*/const char* desc;u64 dtimens;    // 納秒單位,D狀態持續的時間u64 iowaittimens;   // 納秒單位,等待io的時間int stackn;void* parray_stack[TEST_STACK_TRACE_ENTRIES];int wakercpu;int wakerpid;int wakertgid;int wakerppid;char wakercomm[TASK_COMM_LEN];char wakerppidcomm[TASK_COMM_LEN];int wakerstackn;void* parray_wakerstack[TEST_STACK_TRACE_ENTRIES];char filepath[TESTDIOMONITOR_FILE_MAXLEN];u32 __state;u64 exec_start_begin;u64 exec_start_end;u64 local_clock_now;u64 clock_task_curr;u32 writedone;  // 0 or 1
} testdiomonitor_sample;#define TESTDIOMONITOR_SAMPLE_RINGBUFF_MAXCOUNT  8192*4typedef struct testdiomonitor_sample_ringbuff {testdiomonitor_sample* parray_sample;volatile u64 wp;    // Index is wp & (TESTDIOMONITOR_SAMPLE_RINGBUFF_MAXCOUNT - 1).volatile u64 rp;    // Index is rp & (TESTDIOMONITOR_SAMPLE_RINGBUFF_MAXCOUNT - 1).u32 skipcount;  // 0 means no skip any abnormal event
} testdiomonitor_sample_ringbuff;#define TESTDIOMONITOR_LINEBUFF  1024typedef struct testdiomonitor_env {struct file* file;char file_linebuff[TESTDIOMONITOR_LINEBUFF];int headoffset;loff_t file_pos;testdiomonitor_sample_ringbuff ringbuff;
} testdiomonitor_env;static testdiomonitor_env _env;static struct delayed_work work_write_file;
static struct workqueue_struct *wq_write_file;#define FILENAME        "test_new_j6_full.txt"void init_file(void)
{_env.file = filp_open(FILENAME, O_WRONLY | O_CREAT | O_TRUNC, 0644);if (IS_ERR(_env.file)) {_env.file = NULL;}
}void exit_file(void)
{if (_env.file) {filp_close(_env.file, NULL);}
}void testdiomonitor_write_file(char* i_pchar, int i_size)
{if (_env.file) {kernel_write(_env.file, i_pchar, i_size, &_env.file_pos);}
}void testdiomonitor_write_file_emptyline(void)
{testdiomonitor_write_file("\n", strlen("\n"));
}void testdiomonitor_file_oneline(const char* i_format, ...)
{char* pcontent = &_env.file_linebuff[_env.headoffset];va_list args;va_start(args, i_format);vsnprintf(pcontent, TESTDIOMONITOR_LINEBUFF - _env.headoffset, i_format, args);va_end(args);testdiomonitor_write_file(_env.file_linebuff, strlen(_env.file_linebuff));
}void testdiomonitor_replace_null_with_space(char *str, int n) {for (int i = 0; i < n - 1; i++) {if (str[i] == '\0') {str[i] = ' ';}}
}void testdiomonitor_set_cmdline(char* i_pbuff, int i_buffsize, struct task_struct* i_ptask)
{int ret = _get_cmdline_func(i_ptask, i_pbuff, i_buffsize);if (ret <= 0) {i_pbuff[0] = '\0';return;}testdiomonitor_replace_null_with_space(i_pbuff, ret);i_pbuff[ret - 1] = '\0';
}void testdiomonitor_checkget_parentinfo_and_cmdline(testdiomonitor_sample* io_psample, struct task_struct* i_ptask)
{struct task_struct* parent;rcu_read_lock();parent = rcu_dereference(i_ptask->real_parent);io_psample->ppid = parent->pid;strlcpy(io_psample->ppidcomm, parent->comm, TASK_COMM_LEN);rcu_read_unlock();
}void testdiomonitor_checkget_parentinfo_and_cmdline_waker(testdiomonitor_sample* io_psample, struct task_struct* i_ptask)
{struct task_struct* parent;rcu_read_lock();parent = rcu_dereference(i_ptask->real_parent);io_psample->wakerppid = parent->pid;strlcpy(io_psample->wakerppidcomm, parent->comm, TASK_COMM_LEN);rcu_read_unlock();
}#define TESTDIOMONITOR_COMMANDLINE_MAX 128int contains_ls(char *str) {const char *substr = "ls";size_t len = strlen(substr); // 獲取子字符串的長度const char *p = str;while ((p = strchr(p, substr[0])) != NULL) { // 查找第一個字符 'l'if (strncmp(p, substr, len) == 0) { // 比較后續的字符return 1; // 找到了}p++; // 移動到下一個字符}return 0; // 沒有找到
}static void write_file(struct work_struct *w)
{//ssize_t ret;u32 index;testdiomonitor_sample* psample;struct tm t;char timestr[64];char exceedstr[64];char temp_commandline[TESTDIOMONITOR_COMMANDLINE_MAX];struct pid* pid_struct;struct task_struct* ptask;int stacki;while (_env.ringbuff.rp != _env.ringbuff.wp) {index = (_env.ringbuff.rp & (TESTDIOMONITOR_SAMPLE_RINGBUFF_MAXCOUNT - 1));psample = &_env.ringbuff.parray_sample[index];if (psample->writedone != 1) {break;}testdiomonitor_write_file_emptyline();_env.headoffset = sprintf(_env.file_linebuff, "[%llu][%s] ", _env.ringbuff.rp, psample->desc);time64_to_tm(psample->time.tv_sec + 8 * 60 * 60, 0, &t);snprintf(timestr, 64, "%04ld-%02d-%02d-%02d_%02d_%02d.%09ld",1900 + t.tm_year, t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, psample->time.tv_nsec);if (psample->desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DEXCEED) {snprintf(exceedstr, 64, "dtimens[%llu]", psample->dtimens);}else if (psample->desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DIOEXCEED) {snprintf(exceedstr, 64, "iowaittimens[%llu]", psample->iowaittimens);}else if (psample->desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_IOEXCEED) {snprintf(exceedstr, 64, "delayacct_iowaittimens[%llu]", psample->iowaittimens);}else {exceedstr[0] = '\0';}//if (psample->desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DIOEXCEED) {if (psample->desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DEXCEED) {testdiomonitor_file_oneline("[skipcount:%u]begin...time[%s]wakercpu[%d]desc[%s]%s\n", _env.ringbuff.skipcount, timestr, psample->wakercpu, psample->desc, "wakerDexceed");testdiomonitor_file_oneline("wakertgid[%d]wakerpid[%d]wakercomm[%s]wakerppid[%d]wakerppidcomm[%s]\n",psample->wakertgid, psample->wakerpid, psample->wakercomm, psample->wakerppid, psample->wakerppidcomm);pid_struct = find_get_pid(psample->wakerpid);if (pid_struct) {ptask = get_pid_task(pid_struct, PIDTYPE_PID);if (ptask) {testdiomonitor_set_cmdline(temp_commandline, TESTDIOMONITOR_COMMANDLINE_MAX, ptask);put_task_struct(ptask);}else {temp_commandline[0] = '\0';}put_pid(pid_struct);}else {temp_commandline[0] = '\0';}testdiomonitor_file_oneline("wakercommandline[%s]\n", temp_commandline);pid_struct = find_get_pid(psample->wakerppid);if (pid_struct) {ptask = get_pid_task(pid_struct, PIDTYPE_PID);if (ptask) {testdiomonitor_set_cmdline(temp_commandline, TESTDIOMONITOR_COMMANDLINE_MAX, ptask);put_task_struct(ptask);}else {temp_commandline[0] = '\0';}put_pid(pid_struct);}else {temp_commandline[0] = '\0';}testdiomonitor_file_oneline("wakerppid_commandline[%s]\n", temp_commandline);testdiomonitor_file_oneline("stack[%d]:\n", psample->wakerstackn);for (stacki = 0; stacki < psample->wakerstackn; stacki++) {testdiomonitor_file_oneline("%*c%pS\n", 5, ' ', (void *)psample->parray_wakerstack[stacki]);}testdiomonitor_file_oneline("cpu[%d]desc[%s]%s\n", psample->cpu, psample->desc, exceedstr);}else {testdiomonitor_file_oneline("begin...time[%s]cpu[%d]desc[%s]%s\n", timestr, psample->cpu, psample->desc, exceedstr);}testdiomonitor_file_oneline("tgid[%d]pid[%d]comm[%s]ppid[%d]ppidcomm[%s]\n",psample->tgid, psample->pid, psample->comm, psample->ppid, psample->ppidcomm);{const char *desc = "NA";if (psample->__state == TASK_UNINTERRUPTIBLE) {desc = "D";}else if (psample->__state == TASK_KILLABLE) {desc = "K";}testdiomonitor_file_oneline("iniowait[%u]__state[%u][%s]exec_start_begin[%llu]exec_start_end[%llu]local_clock[%llu]clock_task_curr[%llu]\n",psample->bin_iowait ? 1 : 0, psample->__state, desc, psample->exec_start_begin, psample->exec_start_end, psample->local_clock_now, psample->clock_task_curr);}pid_struct = find_get_pid(psample->pid);if (pid_struct) {ptask = get_pid_task(pid_struct, PIDTYPE_PID);if (ptask) {testdiomonitor_set_cmdline(temp_commandline, TESTDIOMONITOR_COMMANDLINE_MAX, ptask);put_task_struct(ptask);}else {temp_commandline[0] = '\0';}put_pid(pid_struct);}else {temp_commandline[0] = '\0';}testdiomonitor_file_oneline("commandline[%s]\n", temp_commandline);pid_struct = find_get_pid(psample->ppid);if (pid_struct) {ptask = get_pid_task(pid_struct, PIDTYPE_PID);if (ptask) {testdiomonitor_set_cmdline(temp_commandline, TESTDIOMONITOR_COMMANDLINE_MAX, ptask);put_task_struct(ptask);}else {temp_commandline[0] = '\0';}put_pid(pid_struct);}else {temp_commandline[0] = '\0';}testdiomonitor_file_oneline("ppid_commandline[%s]\n", temp_commandline);//testdiomonitor_file_oneline("filepath[%s]\n", psample->filepath);testdiomonitor_file_oneline("stack[%d]:\n", psample->stackn);for (stacki = 0; stacki < psample->stackn; stacki++) {testdiomonitor_file_oneline("%*c%pS\n", 5, ' ', (void *)psample->parray_stack[stacki]);}testdiomonitor_write_file_emptyline();smp_wmb();psample->writedone = 0;_env.ringbuff.rp ++;}queue_delayed_work_on(nr_cpu_ids - 1, wq_write_file,&work_write_file, 1);
}static void init_write_file(void)
{init_file();wq_write_file = alloc_workqueue("testdiomonitor_write_file", WQ_MEM_RECLAIM, 0);INIT_DELAYED_WORK(&work_write_file, write_file);queue_delayed_work_on(nr_cpu_ids - 1, wq_write_file,&work_write_file, 3);
}static void exit_write_file(void)
{cancel_delayed_work_sync(&work_write_file);destroy_workqueue(wq_write_file);exit_file();
}void init_testdiomonitor_sample_ringbuff(void) 
{//testdiomonitor_sample* psample;_env.ringbuff.parray_sample = kvzalloc(sizeof(testdiomonitor_sample) * TESTDIOMONITOR_SAMPLE_RINGBUFF_MAXCOUNT, GFP_KERNEL);
}void exit_testdiomonitor_sample_ringbuff(void)
{kvfree(_env.ringbuff.parray_sample);
}testdiomonitor_sample* testdiomonitor_get_psample(void)
{u64 windex_raw, windex_raw_old;u32 windex;while (1) {windex_raw = _env.ringbuff.wp;if (windex_raw - _env.ringbuff.rp >= (u64)(TESTDIOMONITOR_SAMPLE_RINGBUFF_MAXCOUNT)) {_env.ringbuff.skipcount ++;return NULL;}// atomic_cmpxchg return old valuewindex_raw_old = atomic64_cmpxchg((atomic64_t*)&_env.ringbuff.wp,windex_raw, windex_raw + 1);if (windex_raw_old == windex_raw) {break;}}windex = (u32)(windex_raw & (u64)(TESTDIOMONITOR_SAMPLE_RINGBUFF_MAXCOUNT - 1));return &_env.ringbuff.parray_sample[windex];
}static u64 _magic_number = 0xABCDEFull;void* _dl_sched_class = NULL;int get_file_dir_by_folio(struct folio *i_fo, char* i_path, int i_len);void testdiomonitor_add_sample(const char* i_desc, struct task_struct* i_task, u64 i_timens, u32 i_state, u64 i_exec_start_begin, u64 i_exec_start_end, u64 i_local_clock, u64 i_clock_task_curr)
{testdiomonitor_sample* psample = testdiomonitor_get_psample();if (!psample) {return;}ktime_get_real_ts64(&psample->time);psample->cpu = task_cpu(i_task);psample->pid = i_task->pid;psample->tgid = i_task->tgid;strlcpy(psample->comm, i_task->comm, TASK_COMM_LEN);testdiomonitor_checkget_parentinfo_and_cmdline(psample, i_task);psample->bin_iowait = i_task->in_iowait;psample->desc = i_desc;if (i_desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DEXCEED) {psample->dtimens = i_timens;}else if (i_desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DIOEXCEED || i_desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_IOEXCEED) {psample->iowaittimens = i_timens;}psample->stackn = _stack_trace_save_tsk(i_task, (unsigned long*)psample->parray_stack, TEST_STACK_TRACE_ENTRIES, 0);//if (i_desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DIOEXCEED) {if (i_desc == (const char*)TESTDIOMONITOR_SAMPLEDESC_DEXCEED) {psample->__state = i_state;psample->exec_start_begin = i_exec_start_begin;psample->exec_start_end = i_exec_start_end;psample->local_clock_now = i_local_clock;psample->clock_task_curr = i_clock_task_curr;psample->wakercpu = smp_processor_id();psample->wakerpid = current->pid;psample->wakertgid = current->tgid;strlcpy(psample->wakercomm, current->comm, TASK_COMM_LEN);testdiomonitor_checkget_parentinfo_and_cmdline_waker(psample, current);psample->wakerstackn = _stack_trace_save_tsk(current, (unsigned long*)psample->parray_wakerstack, TEST_STACK_TRACE_ENTRIES, 0);// psample->filepath[0] = '\0';// if ((void*)i_task->sched_class != (void*)&_dl_sched_class) {//     if (i_task->dl.dl_runtime == _magic_number) {//         //if (sched_clock() - i_task->dl.dl_deadline >= TESTDIOMONITOR_SIMPLE_THRESHOLDNS) //         {//             //printk("__folio_lock_killable wait %llu ns\n", sched_clock() - current->dl.dl_deadline);//             //dump_stack();//             if (get_file_dir_by_folio((struct folio*)i_task->dl.dl_period, psample->filepath, TESTDIOMONITOR_FILE_MAXLEN) < 0) {//                 //printk("get_file_dir_by_folio fail!\n");//             }//         }//         current->dl.dl_runtime = 0;//     }// }}smp_wmb();psample->writedone = 1;
}static void cb_sched_switch(void *i_data, bool i_preempt,struct task_struct *i_prev,struct task_struct *i_next,unsigned int i_prev_state)
{
#ifndef TESTDIOMONITOR_SIMPLEvoid* parray_stack[TEST_STACK_TRACE_ENTRIES];int num_stack;int stacki;if (i_prev_state == TASK_UNINTERRUPTIBLE) {if (i_prev->in_iowait) {testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_SWDIOSTART, i_prev, 0);}else {testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_SWDSTART, i_prev, 0);}}else if (i_prev->in_iowait) {testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_SWDIOSTART, i_prev, 0);}
#endif
}const char* getstatstr_bystate(u32 i_state) {switch (i_state) {case TASK_RUNNING:return "TASK_RUNNING";case TASK_INTERRUPTIBLE:return "TASK_INTERRUPTIBLE";case TASK_UNINTERRUPTIBLE:return "TASK_UNINTERRUPTIBLE";default:return "other";}
}static void cb_sched_waking(void *i_data, struct task_struct *i_p) {if ((i_p->__state & TASK_UNINTERRUPTIBLE) == TASK_UNINTERRUPTIBLE) {//u64 currns = my_rq_clock_task();struct rq* prq = my_cpu_rq(task_cpu(i_p));struct rq* prq_curr = my_cpu_rq(smp_processor_id());u64 currns = prq->clock_task;u64 currns_curr = prq_curr->clock_task;//u64 local_c = local_clock();//int cpuid = smp_processor_id();//if (i_p->in_iowait) {
#ifndef TESTDIOMONITOR_SIMPLEtestdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_WADIOSTOP, i_p, 0);
#endif
#ifdef TESTDIOMONITOR_SIMPLE//if (currns - i_p->se.exec_start >= TESTDIOMONITOR_SIMPLE_THRESHOLDNS)
#endif//testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_DIOEXCEED, i_p, currns - i_p->se.exec_start);
#ifndef TESTDIOMONITOR_SIMPLEif (i_p->se.exec_start > currns) {//if (task_cpu(i_p) == cpuid) {printk("comm[%s]pid[%d]exec_start[%llu]currns[%llu]local_clock[%llu]last_cpu[%d]cpuid[%d]\n", i_p->comm, i_p->pid, i_p->se.exec_start, currns, local_c, task_cpu(i_p), cpuid);}}// if (printk_ratelimit()) {//     printk("waking dump_stack[D]:\n");//     dump_stack();// }
#endif}
//#ifndef TESTDIOMONITOR_SIMPLE//else {//testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_WADSTOP, i_p, 0);if (currns - i_p->se.exec_start >= TESTDIOMONITOR_SIMPLE_THRESHOLDNS) {//if (strcmp(current->comm, "ls") == 0) {//if (strcmp(i_p->comm, "hobot-log") != 0) {testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_DEXCEED, i_p, currns - i_p->se.exec_start, i_p->__state, i_p->se.exec_start, currns, local_clock(), currns_curr);}return;//}}if (i_p->se.exec_start > currns) {//if (task_cpu(i_p) == cpuid) // {//     printk("comm[%s]pid[%d]exec_start[%llu]currns[%llu]local_clock[%llu]last_cpu[%d]cpuid[%d]\n", //         i_p->comm, i_p->pid, i_p->se.exec_start, currns, local_c, task_cpu(i_p), cpuid);// }}}
//#endif}if (strcmp(current->comm, "ls") == 0|| strcmp(current->comm, "wc") == 0|| strcmp(current->comm, "grep") == 0|| strcmp(current->comm, "awk") == 0) {if (strcmp(i_p->comm, "hobot-log") != 0&& strcmp(i_p->comm, "kthreadd") != 0) {struct rq* prq = my_cpu_rq(task_cpu(i_p));struct rq* prq_curr = my_cpu_rq(smp_processor_id());u64 currns = prq->clock_task;u64 currns_curr = prq_curr->clock_task;testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_DEXCEED, i_p, currns - i_p->se.exec_start, i_p->__state, i_p->se.exec_start, currns, local_clock(), currns_curr);}}//else if (i_p->in_iowait) {//struct rq* prq = my_cpu_rq(task_cpu(i_p));//u64 currns = prq->clock_task;//u64 local_c = local_clock();//int cpuid = smp_processor_id();//if (printk_ratelimit()) // {//     printk("i_p->__state=[%u][%s]\n", i_p->__state, getstatstr_bystate(i_p->__state));//     printk("waking dump_stack[K]:\n");//     dump_stack();// }
#ifndef TESTDIOMONITOR_SIMPLEtestdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_WADIOSTOP, i_p, 0);
#endif
#ifdef TESTDIOMONITOR_SIMPLE//if (currns - i_p->se.exec_start >= TESTDIOMONITOR_SIMPLE_THRESHOLDNS)
#endif//testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_DIOEXCEED, i_p, currns - i_p->se.exec_start);}
}static void cb_iodelay_account(void *i_data, struct task_struct *i_curr,unsigned long long i_delta)
{
#ifdef TESTDIOMONITOR_SIMPLE//if (i_delta >= TESTDIOMONITOR_SIMPLE_THRESHOLDNS)
#endif//testdiomonitor_add_sample(TESTDIOMONITOR_SAMPLEDESC_IOEXCEED, i_curr, i_delta);
}struct kern_tracepoint {void *callback;struct tracepoint *ptr;bool bregister;
};
static void clear_kern_tracepoint(struct kern_tracepoint *tp)
{if (tp->bregister) {tracepoint_probe_unregister(tp->ptr, tp->callback, NULL);}
}#define INIT_KERN_TRACEPOINT(tracepoint_name) \static struct kern_tracepoint mykern_##tracepoint_name = {.callback = NULL, .ptr = NULL, .bregister = false};#define TRACEPOINT_CHECK_AND_SET(tracepoint_name)                                             \static void tracepoint_name##_tracepoint_check_and_set(struct tracepoint *tp, void *priv) \{                                                                                \if (!strcmp(#tracepoint_name, tp->name))                                     \{                                                                            \((struct kern_tracepoint *)priv)->ptr = tp;                          \return;                                                                  \}                                                                            \}INIT_KERN_TRACEPOINT(sched_switch)
TRACEPOINT_CHECK_AND_SET(sched_switch)
INIT_KERN_TRACEPOINT(sched_waking)
TRACEPOINT_CHECK_AND_SET(sched_waking)
#ifdef IODELAY_TRACEPOINT_ENABLE
INIT_KERN_TRACEPOINT(iodelay_account)
TRACEPOINT_CHECK_AND_SET(iodelay_account)
#endiftypedef unsigned long (*kallsyms_lookup_name_func)(const char *name);
kallsyms_lookup_name_func _kallsyms_lookup_name_func;void* get_func_by_symbol_name_kallsyms_lookup_name(void)
{int ret;void* pfunc = NULL;struct kprobe kp;memset(&kp, 0, sizeof(kp));kp.symbol_name = "kallsyms_lookup_name";kp.pre_handler = NULL;kp.addr = NULL;	// 作為強調,提示使用symbol_nameret = register_kprobe(&kp);if (ret < 0) {printk("register_kprobe fail!\n");return NULL;}printk("register_kprobe succeed!\n");pfunc = (void*)kp.addr;unregister_kprobe(&kp);return pfunc;
}void* get_func_by_symbol_name(const char* i_symbol)
{if (_kallsyms_lookup_name_func == NULL) {return NULL;}return (void*)_kallsyms_lookup_name_func(i_symbol);
}enum behavior {EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like* __folio_lock() waiting on then setting PG_locked.*/SHARED,		/* Hold ref to page and check the bit when woken, like* folio_wait_writeback() waiting on PG_writeback.*/DROP,		/* Drop ref to page before wait, no check when woken,* like folio_put_wait_locked() on PG_locked.*/
};int kprobecb_folio_lock_killable_pre(struct kprobe* i_k, struct pt_regs* i_p)
{if ((void*)current->sched_class != (void*)&_dl_sched_class) {struct folio *fo = (struct folio*) i_p->regs[0];//i_p->di;int bit_nr = (int)i_p->regs[1];//i_p->si;int state = (int)i_p->regs[2];//i_p->dx;enum behavior beh = (enum behavior)i_p->regs[3];//i_p->cx;if (bit_nr != PG_locked || state != TASK_KILLABLE|| beh != EXCLUSIVE) {return 0;}current->dl.dl_runtime = _magic_number;current->dl.dl_deadline = sched_clock();current->dl.dl_period = (u64)fo;}return 0;
}int getfullpath(struct inode *inode,char* i_buffer,int i_len)
{struct dentry *dentry;//printk("inode = %ld\n", inode->i_ino);//spin_lock(&inode->i_lock);hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {char *buffer, *path;buffer = (char *)__get_free_page(GFP_KERNEL);if (!buffer)return -ENOMEM;path = dentry_path_raw(dentry, buffer, PAGE_SIZE);if (IS_ERR(path)){continue;   }strlcpy(i_buffer, path, i_len);//printk("dentry name = %s , path = %s", dentry->d_name.name, path);free_page((unsigned long)buffer);}//spin_unlock(&inode->i_lock);return 0;
}int get_file_dir_by_folio(struct folio *i_fo, char* i_path, int i_len)
{if (i_fo->mapping) {struct inode *inode = i_fo->mapping->host;if (inode) {// struct dentry *dentry = inode->i_dentry;// if (!dentry) {//     return -1;// }{//char path_buf[256];int ret = 0;if ((ret = getfullpath(inode, i_path, i_len)) < 0) {return ret;}// struct path path;// //dentry_lock(dentry);// path.dentry = dentry;// path.mnt = dget(dentry->d_sb->s_root);// if (dentry_path_raw(dentry, path_buf, sizeof(path_buf)) >= 0) {//     pr_info("File path: %s\n", path_buf);// }//dentry_unlock(dentry);}return 0;}}return -1;
}struct kprobe _kp1;void kprobecb_folio_lock_killable_post(struct kprobe *p, struct pt_regs *regs,unsigned long flags)
{// if (current->sched_class != &_dl_sched_class) {//     if (current->dl.dl_runtime == _magic_number) {//         if (sched_clock() - current->dl.dl_deadline >= TESTDIOMONITOR_SIMPLE_THRESHOLDNS) {//             //printk("__folio_lock_killable wait %llu ns\n", sched_clock() - current->dl.dl_deadline);//             //dump_stack();//             if (get_file_dir_by_folio((struct folio*)current->dl.dl_period) < 0) {//                 printk("get_file_dir_by_folio fail!\n");//             }//         }//         current->dl.dl_runtime = 0;//     }// }
}int kprobe_register_func_folio_lock_killable(void)
{// int ret;// memset(&_kp1, 0, sizeof(_kp1));// _kp1.symbol_name = "folio_wait_bit_common";// _kp1.pre_handler = kprobecb_folio_lock_killable_pre;// _kp1.post_handler = kprobecb_folio_lock_killable_post;// ret = register_kprobe(&_kp1);// if (ret < 0) {// 	printk("register_kprobe fail!\n");// 	return -1;// }// printk("register_kprobe success!\n");return 0;
}void kprobe_unregister_func_folio_lock_killable(void)
{// unregister_kprobe(&_kp1);
}extern void* get_dl_sched_class_pointer(void);
extern struct rq* get_runqueues(void);static int __init testdiomonitor_full_init(void)
{printk(KERN_INFO "ns=%lu\n", ns);//printk("offset of mmap_lock in mm_struct [%d]\n", offsetof(struct mm_struct, mmap_lock));_kallsyms_lookup_name_func = get_func_by_symbol_name_kallsyms_lookup_name();// _dl_sched_class = (void*)_kallsyms_lookup_name_func("dl_sched_class");// if (_dl_sched_class == NULL) {//     printk(KERN_ERR "get_func_by_symbol_name _dl_sched_class failed!\n");//     return -1;// }_dl_sched_class = get_dl_sched_class_pointer();// _prq = get_func_by_symbol_name("runqueues");// if (_prq == NULL) {//     printk(KERN_ERR "get_func_by_symbol_name runqueues failed!\n");//     return -1;// }_prq = get_runqueues();init_testdiomonitor_sample_ringbuff();init_write_file();_stack_trace_save_tsk = get_func_by_symbol_name("stack_trace_save_tsk");if (_stack_trace_save_tsk == NULL) {printk(KERN_ERR "get_func_by_symbol_name stack_trace_save_tsk failed!\n");return -1;}_get_cmdline_func = get_func_by_symbol_name("get_cmdline");if (_get_cmdline_func == NULL) {printk(KERN_ERR "get_func_by_symbol_name get_cmdline failed!\n");return -1;}mykern_sched_switch.callback = cb_sched_switch;for_each_kernel_tracepoint(sched_switch_tracepoint_check_and_set, &mykern_sched_switch);if (!mykern_sched_switch.ptr) {printk(KERN_ERR "mykern_sched_switch register failed!\n");return -1;}else {printk(KERN_INFO "mykern_sched_switch register succeeded!\n");}tracepoint_probe_register(mykern_sched_switch.ptr, mykern_sched_switch.callback, NULL);mykern_sched_switch.bregister = 1;mykern_sched_waking.callback = cb_sched_waking;for_each_kernel_tracepoint(sched_waking_tracepoint_check_and_set, &mykern_sched_waking);if (!mykern_sched_waking.ptr) {printk(KERN_ERR "mykern_sched_waking register failed!\n");return -1;}else {printk(KERN_INFO "mykern_sched_waking register succeeded!\n");}tracepoint_probe_register(mykern_sched_waking.ptr, mykern_sched_waking.callback, NULL);mykern_sched_waking.bregister = 1;#ifdef IODELAY_TRACEPOINT_ENABLEmykern_iodelay_account.callback = cb_iodelay_account;for_each_kernel_tracepoint(iodelay_account_tracepoint_check_and_set, &mykern_iodelay_account);if (!mykern_iodelay_account.ptr) {printk(KERN_ERR "mykern_iodelay_account register failed!\n");return -1;}else {printk(KERN_INFO "mykern_iodelay_account register succeeded!\n");}tracepoint_probe_register(mykern_iodelay_account.ptr, mykern_iodelay_account.callback, NULL);mykern_iodelay_account.bregister = 1;
#endifkprobe_register_func_folio_lock_killable();return 0;
}static void __exit testdiomonitor_fullexit(void)
{kprobe_unregister_func_folio_lock_killable();clear_kern_tracepoint(&mykern_sched_switch);clear_kern_tracepoint(&mykern_sched_waking);
#ifdef IODELAY_TRACEPOINT_ENABLEclear_kern_tracepoint(&mykern_iodelay_account);
#endiftracepoint_synchronize_unregister();exit_write_file();exit_testdiomonitor_sample_ringbuff();
}module_init(testdiomonitor_full_init);
module_exit(testdiomonitor_fullexit);

2.2 抓取效果展示

抓取到的waker喚醒wakee的堆棧如下:

三、源碼改動部分解釋及TASK_RTLOCK_WAIT相關細節

3.1 TASK_RTLOCK_WAIT狀態在perfetto的視角里是Uninterruptible Sleep狀態,即通常意義上的D狀態

如下圖,抓自perfetto里:

如下圖可以看到,這個3626線程是被ls 16492喚醒:

3.1.1 但是從抓到的堆棧里可以看到__state里的TASK_UNINTERRUPTIBLE的這個bit并不是1

下圖是抓到的waker和wakee的堆棧:

從上圖里的被喚醒者,線程3626的狀態信息:__state[4096]可以得知,在trace_sched_waking時被喚醒者線程的狀態是4096,即0x1000,而TASK_UNINTERRUPTIBLE是2,所以__state & TASK_UNINTERRUPTIBLE并不等于TASK_UNINTERRUPTIBLE。

所以這種特殊的peretto認為的D狀態,在底層邏輯里不能通過__state & TASK_UNINTERRUPTIBLE是否等于TASK_UNINTERRUPTIBLE來判斷。

3.1.2?TASK_RTLOCK_WAIT是0x1000

在kernel/include/linux/sched.h里有TASK_RTLOCK_WAIT的定義

3.2 rt-linux系統里用到的rtmutex和spinlock_rt會設置這個TASK_RTLOCK_WAIT狀態

TASK_RTLOCK_WAIT狀態會設置到__state里,在如下圖在rtlock_slowlock_locked有設置:

另外,在current_save_and_set_rtlock_wait_state宏里有如下設置:

而current_save_and_set_rtlock_wait_state宏在rtlock_slowlock_locked(rtmutex.c)和spinlock_rt.c里都有使用:

上圖里的rwbase_set_and_save_current_state宏在rwbase_write_lock里使用:

在使能CONFIG_PREEMPT_RT宏之后,struct mutex被定義成:

而rt_mutex_base有關的函數即在上面已經展示過的rtmutex.c里的rtlock_slowlock_locked等函數所關聯使用。

3.3 源碼改動部分解釋

在 2.1 一節里展示的源碼,展示的是在調試過程中抓到問題情況堆棧的一份源碼,但是從原理上,是可以進行進一步改進的。我們在下面的最后一節 3.3.5?里提及如何進一步改進。我們先說明一下源碼里和之前的?缺頁異常導致的iowait打印出相關文件的絕對路徑-CSDN博客 博客里的 2.1?一節里的源碼的差異改動部分的內容的原理。

3.3.1 針對arm64平臺需要調整kprobe的callback里的實現

我們的這次實例代碼是針對的arm64的rt-linux平臺,針對kprobe的callback的實現,需要針對不同的平臺做不同的調整,如果是arm64平臺,則要如下方式使用參數,即由原來的x86下的di/si/dx/cx改成regs[0]/regs[1]/regs[2]/regs[3]這樣來得到入參:

3.3.2 內核里增加兩個函數,為了適配當前的arm64內核版本

當前使用arm64內核版本無法拿到runqueues和dl_sched_class這兩個符號。

所以直接在內核里增加兩個export symbol的函數,如下實現:

3.3.3?為了讓抓取的堆棧更加聚焦D狀態,去掉了iowait情況的抓取

去掉iowait情形,只打印非iowait時的D狀態的堆棧:

打印喚醒者和被喚醒者的堆棧的邏輯和抓iowait時堆棧的邏輯是基本一樣的。

相應地,在采樣時,也只轉換非iowait的D狀態的情況:

為了清楚的顯示任務在被waking時的狀態,寫了一個狀態轉換函數:

這部分倒是可以在優化一下,增加TASK_RTLOCK_WAIT的情況,還有的情況,這里1026即TASK_RTLOCK_WAIT | TASK_UNINTERRUPTIBLE的狀態。

這個增加TASK_RTLOCK_WAIT等其他狀態在調試到問題情況前是不預知,即并不知道會出現這樣的狀態,所以真正在調試一些corner case時,還得加一些額外的如下面 3.3.3 里類似的邏輯去增加一些打印,但是肯定得考慮增加的打印的量不能過大而導致引入別的問題或者引入因為打印過大而導致的問題。

3.3.4?為了抓取到指定嫌疑任務的喚醒堆棧,加上了特殊的判斷邏輯

如下圖,在cb_sched_waking里有如下判斷邏輯:

意思是在喚醒者的任務名時ls或者wc或者grep或者awk的情況,被喚醒者的任務名不是xx或者kthreadd的情況,則進行記錄。這樣可以覆蓋一些corner case,把相關嫌疑的喚醒邏輯都記錄下來,用來復現和調試相關問題。

3.3.5?如果不介意打印的內容特別多的話,可以加上TASK_RTLOCK_WAIT的情況

如果不介意打印的內容特別多的話,可以在如下cb_sched_waking里把所有的i_p->__state是TASK_RTLOCK_WAIT的情況都照顧到,如下圖這里的判斷增加== TASK_RTLOCK_WAIT的情況:

考慮到所有TASK_RTLOCK_WAIT的情況,而不是只考慮指定任務情況的waker和wakee的打印:

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/bicheng/78667.shtml
繁體地址,請注明出處:http://hk.pswp.cn/bicheng/78667.shtml
英文地址,請注明出處:http://en.pswp.cn/bicheng/78667.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

【Redis】zset類型

目錄 1、介紹2、底層實現【1】壓縮列表【2】跳躍表哈希表 3、常用命令 1、介紹 有序集合結合了集合和有序列表的特性&#xff0c;每個元素都會關聯一個分數&#xff0c;Redis正是通過這個分數來為集合中的成員進行排序。 2、底層實現 【1】壓縮列表 適用條件 1、元素數量 ≤…

ZeroGrasp:零樣本形狀重建助力機器人抓取

25年4月來自CMU、TRI 和 豐田子公司 Woven 的論文“ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic Grasping”。 機器人抓取是具身系統的核心能力。許多方法直接基于部分信息輸出抓取結果&#xff0c;而沒有對場景的幾何形狀進行建模&#xff0c;導致運動效果不…

AI大模型從0到1記錄學習 linux day21

第 1 章 Linux入門 1.1 概述 1.2 Linux和Windows區別 第 2 章 VMware、Ubuntu、Xshell和Xftp安裝 第 3 章 Linux文件與目錄結構 3.1 Linux文件 Linux系統中一切皆文件。 3.2 Linux目錄結構 ? /bin 是Binary的縮寫, 這個目錄存放著最經常使用的命令的可執行文件&#xff0c…

Pytest安裝

一、簡介 pytest是一個非常成熟的全功能的Python測試框架&#xff0c;主要有以下幾個特點&#xff1a;簡單靈活&#xff0c;容易上手支持參數化能夠支持簡單的單元測試和復雜的功能測試&#xff0c;還可以用來做selenium/appnium等自動化測試、接口自動化測試&#xff08;pytes…

企業網站html源代碼 企業網站管理源碼模板

在數字化轉型加速的今天&#xff0c;企業官網已成為品牌展示與業務拓展的核心陣地。本文將從技術實現角度&#xff0c;解析企業網站HTML基礎架構與管理系統的源碼設計邏輯&#xff0c;為開發者提供可復用的模板化解決方案。 企業網站源碼5000多套&#xff1a;Yunbuluo.Net 一…

特征工程四-1:自定義函數find_similar_docs查找最相似文檔案例

find_similar_docs 函數參數詳解及實際示例 函數參數說明 def find_similar_docs(query, vectorizer, doc_matrix, top_n3):參數類型說明querystr要查詢的文本字符串vectorizerTfidfVectorizer已經訓練好的TF-IDF向量化器doc_matrixscipy.sparse.csr_matrix文檔集的TF-IDF特征…

連鎖美業管理系統「數據分析」的重要作用分析︳博弈美業系統療愈系統分享

?美業管理系統中的數據分析功能在提升運營效率、優化客戶體驗、增強決策科學性等方面具有重要作用。 數據分析功能將美業從“經驗驅動”升級為“數據驅動”&#xff0c;幫助商家在客戶管理、成本控制、服務創新等環節實現精細化運營&#xff0c;最終提升盈利能力與品牌競爭力…

當元數據遇見 AI 運維:智能診斷企業數據資產健康度

在數字化浪潮席卷全球的當下&#xff0c;企業數據資產規模呈指數級增長&#xff0c;然而傳統數據監控方式卻逐漸暴露出諸多弊端。想象一下&#xff0c;在某頭部電商的晨會上&#xff0c;數據工程師小王正經歷職業生涯最尷尬的時刻&#xff1a;“昨天促銷活動的 UV 數據為什么比…

淘寶tb.cn短鏈接生成

淘寶短鏈接簡介 1. 一鍵在線生成淘寶短鏈接tb.cn,m.tb.cn等 2. 支持淘寶優惠券短鏈接等淘寶系的所有網址 3. 生成的淘寶短鏈接是官方的&#xff0c;安全穩定有保證 4.適合多種場景下使用&#xff0c;如&#xff1a;網站推廣&#xff0c;短信推廣 量大提供api接口&#xff0…

【LLM應用開發101】初探RAG

本文是LLM應用開發101系列的先導篇&#xff0c;旨在幫助讀者快速了解LLM應用開發中需要用到的一些基礎知識和工具/組件。 本文將包括以下內容&#xff1a;首先會介紹LLM應用最常見的搜索增強生成RAG,然后引出實現RAG的一個關鍵組件 – 向量數據庫&#xff0c;隨后我們是我們這…

努比亞Z70S Ultra 攝影師版將于4月28日發布,首發【光影大師990】傳感器

4月22日消息&#xff0c;努比亞將在4月28日14:00召開努比亞AI雙旗艦新品發布會&#xff0c;預計發布努比亞Z70S Ultra 攝影師版和努比亞首款平板產品。據悉&#xff0c;努比亞Z70S Ultra 攝影師版將搭載第七代真全面無孔屏、第五代原生35mm高定光學、6600mAh電池&#xff0c;可…

DAY7-C++進階學習

模板 學習鏈接1&#xff1a;C模板入門學習 學習鏈接2&#xff1a;C模板進階學習 STL的重要實現原理&#xff0c;模板的聲明和定義建議放到一個文件 xxx.hpp 里面或者 xxx.h&#xff0c;防止編譯錯誤。 函數模板特化 1.基礎模板 2.template<> 3.函數名<特化類型>…

redis_Windows中安裝redis

①Windows安裝包下載地址&#xff1a;https://github.com/tporadowski/redis/releases 當前最新版本截圖 ②根據自己系統平臺的實際情況選擇對應的安裝包&#xff0c;如&#xff1a;64位win10系統可選擇Redis-x64-5.0.14.msi ③下載完成后運行安裝&#xff0c;沒有特殊要求的話…

Windows 安裝 MongoDB 教程

Windows 安裝 MongoDB 教程 MongoDB 是一個開源的 NoSQL 數據庫&#xff0c;它使用文檔存儲模型而不是傳統的關系表格。它非常適合需要處理大量數據并且需要高性能、可擴展性的應用場景。下面是如何在 Windows 系統上安裝 MongoDB 的詳細步驟。 一、準備工作 確保你的 Windo…

Vue Router 核心指南:構建高效單頁應用的導航藝術

Vue Router 是 Vue.js 官方路由管理器&#xff0c;為單頁應用&#xff08;SPA&#xff09;提供了無縫的頁面切換體驗。本文將深入解析其核心功能與最佳實踐。 一、基礎配置 1. 安裝與初始化 npm install vue-router // router/index.js import Vue from vue import Router …

基礎學習:(9)vit -- vision transformer 和其變體調研

文章目錄 前言1 vit 熱點統計1.1 目標分類 / 基礎與改進1.2 輕量化 ViT / 移動部署優化(移動端)1.3 密集預測&#xff08;語義分割 / 深度估計等&#xff09;1.4 目標/詞匯 檢測1.5 掩碼改進1.6 多模態/ 通用大模型1.7 分布式訓練 / 效果提升1.8 任務特化應用&#xff08;圖表 …

同樣開源的自動化工作流工具n8n和Dify對比

n8n和Dify作為兩大主流工具&#xff0c;分別專注于通用自動化和AI應用開發領域&#xff0c;選擇哪個更“好用”需結合具體需求、團隊能力及業務場景綜合判斷。以下是核心維度的對比分析&#xff1a; 一、核心定位與適用場景 維度n8nDify核心定位開源全場景自動化工具&#xff…

網頁設計規范:從布局到交互的全方位指南

網頁設計規范看似繁雜&#xff0c;但其實都是為了給用戶提供更好的體驗。只有遵循這些規范&#xff0c;才能設計出既美觀又實用的網頁&#xff0c;讓用戶在瀏覽網頁時感到舒適、愉悅。 一、用戶體驗至上 用戶體驗&#xff08;UX&#xff09;是網頁設計的核心原則之一。設計師…

圖神經網絡(GNN)基本概念與核心原理

圖神經網絡(GNN)基本概念與核心原理 圖神經網絡(GNN)是一類專門處理圖結構數據的神經網絡模型 (GTAT: empowering graph neural networks with cross attention | Scientific Reports)。圖結構數據由節點(表示實體)和邊(表示實體間關系)構成,每個節點和邊都可以帶有特…

【雙指針】專題:LeetCode 18題解——四數之和

四數之和 一、題目鏈接二、題目三、題目解析四、算法原理解法一&#xff1a;排序 暴力枚舉 利用 set 去重解法二&#xff1a;排序 雙指針 五、編寫代碼六、時間復雜度和空間復雜度 一、題目鏈接 四數之和 二、題目 三、題目解析 題目要求基本與三數之和一樣。 四、算法原…