Linux epoll 實現詳解 (fs/eventpoll.c)

核心數據結構分析

1. struct eventpoll (epoll 實例核心結構)

c

struct eventpoll {struct mutex mtx;           // 保護 epoll 結構的互斥鎖wait_queue_head_t wq;       // epoll_wait() 使用的等待隊列wait_queue_head_t poll_wait; // 文件 poll() 使用的等待隊列struct list_head rdllist;    // 就緒事件鏈表 (核心數據結構)struct rb_root_cached rbr;  // 紅黑樹根節點 (管理所有監控的fd)struct epitem *ovflist;     // 單鏈表 (事件傳輸期間臨時存放就緒事件)struct wakeup_source *ws;   // 電源管理喚醒源struct user_struct *user;   // 所屬用戶struct file *file;          // 關聯的文件結構// ... 其他字段
};

2. struct epitem (被監控的文件描述符)

c

struct epitem {struct rb_node rbn;         // 紅黑樹節點struct list_head rdllink;   // 就緒鏈表節點struct epoll_filefd ffd;    // 文件描述符和文件指針 {file*, fd}int nwait;                  // 等待隊列數量struct list_head pwqlist;   // poll 等待隊列鏈表struct eventpoll *ep;       // 所屬的 eventpollstruct epoll_event event;   // 用戶設置的事件// ... 其他字段
};

3. struct eppoll_entry (等待隊列包裝)

c

struct eppoll_entry {struct list_head llink;     // 鏈表節點struct epitem *base;        // 關聯的 epitemwait_queue_entry_t wait;    // 等待隊列項 (核心)wait_queue_head_t *whead;   // 目標等待隊列頭
};

核心機制詳解

1. 事件注冊 (epoll_ctl)

c

SYSCALL_DEFINE4(epoll_ctl, ...)└─ ep_insert() // 核心插入邏輯├─ 初始化 epitem├─ 初始化 poll_table (ep_ptable_queue_proc)├─ 調用文件的 poll 方法├─ 將 epitem 加入紅黑樹└─ 若文件已就緒,加入就緒列表

2. 事件等待 (epoll_wait)

c

SYSCALL_DEFINE4(epoll_wait, ...)└─ do_epoll_wait()└─ ep_poll()├─ 檢查就緒列表 (rdllist)├─ 無事件時阻塞等待└─ 有事件時調用 ep_send_events()

3. 事件回調機制

c

// 關鍵回調函數
static int ep_poll_callback(wait_queue_entry_t *wait, ...)├─ 檢查事件是否匹配├─ 若正在傳輸事件 (ovflist),加入臨時鏈表├─ 否則加入就緒鏈表 (rdllist)└─ 喚醒等待進程

4. 事件傳輸機制

c

static int ep_send_events(...)└─ ep_scan_ready_list(ep_send_events_proc)├─ 鎖定狀態下轉移就緒列表├─ 處理事件 (無鎖狀態)├─ 檢查水平觸發(LT)模式└─ 合并新產生的事件

關鍵技術亮點

1. 高效數據結構

  • 紅黑樹:管理所有監控的文件描述符 (O(log n) 操作)

  • 就緒鏈表:雙鏈表維護已就緒事件 (O(1) 訪問)

  • ovflist單鏈表:解決事件傳輸期間的新事件問題

2. 回調驅動機制

  • 通過 eppoll_entry 注冊回調到文件等待隊列

  • 事件發生時直接加入就緒鏈表,避免全量掃描

3. 水平觸發(LT)與邊緣觸發(ET)

c

// ep_send_events_proc 中的處理邏輯
if (!(epi->event.events & EPOLLET)) { // LT 模式list_add_tail(&epi->rdllink, &ep->rdllist); // 重新加入就緒列表
}

4. 就緒列表掃描優化

c

static __poll_t ep_scan_ready_list(...)
{// 1. 鎖定狀態下轉移就緒列表到臨時列表// 2. 解鎖狀態下處理臨時列表// 3. 處理期間新事件通過 ovflist 收集// 4. 完成后合并 ovflist 和剩余事件
}

性能優化措施

1. 避免數據拷貝

  • 內核到用戶空間直接傳遞就緒事件

  • 使用共享內存減少拷貝 (io_uring 更進一步)

2. 減少系統調用

  • 單次 epoll_wait 返回多個事件

  • 就緒事件 O(1) 獲取

3. 多路復用優化

c

#ifdef CONFIG_NET_RX_BUSY_POLL
static void ep_busy_loop(struct eventpoll *ep, int nonblock)
{// 在特定場景下使用忙等優化
}
#endif

關鍵函數說明

函數功能
ep_insert()添加監控的文件描述符
ep_remove()移除監控的文件描述符
ep_poll_callback()事件觸發時的核心回調
ep_scan_ready_list()安全處理就緒事件列表
ep_send_events_proc()向用戶空間傳遞事件
ep_poll()epoll_wait 的核心實現

總結

Linux epoll 實現通過以下設計實現高性能:

  1. 紅黑樹高效管理海量文件描述符

  2. 就緒鏈表實現O(1)事件獲取

  3. 回調機制避免無效輪詢

  4. 雙階段處理(就緒列表掃描)減少鎖競爭

  5. 水平/邊緣觸發模式靈活適配不同場景

這些設計使epoll在管理大量并發連接時,性能遠超select/poll,成為高性能網絡服務的核心基礎設施。

/**  fs/eventpoll.c (Efficient event retrieval implementation)*  Copyright (C) 2001,...,2009	 Davide Libenzi**  This program is free software; you can redistribute it and/or modify*  it under the terms of the GNU General Public License as published by*  the Free Software Foundation; either version 2 of the License, or*  (at your option) any later version.**  Davide Libenzi <davidel@xmailserver.org>**/#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/string.h>
#include <linux/list.h>
#include <linux/hash.h>
#include <linux/spinlock.h>
#include <linux/syscalls.h>
#include <linux/rbtree.h>
#include <linux/wait.h>
#include <linux/eventpoll.h>
#include <linux/mount.h>
#include <linux/bitops.h>
#include <linux/mutex.h>
#include <linux/anon_inodes.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/mman.h>
#include <linux/atomic.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/compat.h>
#include <linux/rculist.h>
#include <net/busy_poll.h>/** LOCKING:* There are three level of locking required by epoll :** 1) epmutex (mutex)* 2) ep->mtx (mutex)* 3) ep->wq.lock (spinlock)** The acquire order is the one listed above, from 1 to 3.* We need a spinlock (ep->wq.lock) because we manipulate objects* from inside the poll callback, that might be triggered from* a wake_up() that in turn might be called from IRQ context.* So we can't sleep inside the poll callback and hence we need* a spinlock. During the event transfer loop (from kernel to* user space) we could end up sleeping due a copy_to_user(), so* we need a lock that will allow us to sleep. This lock is a* mutex (ep->mtx). It is acquired during the event transfer loop,* during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().* Then we also need a global mutex to serialize eventpoll_release_file()* and ep_free().* This mutex is acquired by ep_free() during the epoll file* cleanup path and it is also acquired by eventpoll_release_file()* if a file has been pushed inside an epoll set and it is then* close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).* It is also acquired when inserting an epoll fd onto another epoll* fd. We do this so that we walk the epoll tree and ensure that this* insertion does not create a cycle of epoll file descriptors, which* could lead to deadlock. We need a global mutex to prevent two* simultaneous inserts (A into B and B into A) from racing and* constructing a cycle without either insert observing that it is* going to.* It is necessary to acquire multiple "ep->mtx"es at once in the* case when one epoll fd is added to another. In this case, we* always acquire the locks in the order of nesting (i.e. after* epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired* before e2->mtx). Since we disallow cycles of epoll file* descriptors, this ensures that the mutexes are well-ordered. In* order to communicate this nesting to lockdep, when walking a tree* of epoll file descriptors, we use the current recursion depth as* the lockdep subkey.* It is possible to drop the "ep->mtx" and to use the global* mutex "epmutex" (together with "ep->wq.lock") to have it working,* but having "ep->mtx" will make the interface more scalable.* Events that require holding "epmutex" are very rare, while for* normal operations the epoll private "ep->mtx" will guarantee* a better scalability.*//* Epoll private bits inside the event mask */
#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)/* Maximum number of nesting allowed inside epoll sets */
#define EP_MAX_NESTS 4#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))#define EP_UNACTIVE_PTR ((void *) -1L)#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))struct epoll_filefd {struct file *file;int fd;
} __packed;/** Structure used to track possible nested calls, for too deep recursions* and loop cycles.*/
struct nested_call_node {struct list_head llink;void *cookie;void *ctx;
};/** This structure is used as collector for nested calls, to check for* maximum recursion dept and loop cycles.*/
struct nested_calls {struct list_head tasks_call_list;spinlock_t lock;
};/** Each file descriptor added to the eventpoll interface will* have an entry of this type linked to the "rbr" RB tree.* Avoid increasing the size of this struct, there can be many thousands* of these on a server and we do not want this to take another cache line.*/
struct epitem {union {/* RB tree node links this structure to the eventpoll RB tree */struct rb_node rbn;/* Used to free the struct epitem */struct rcu_head rcu;};/* List header used to link this structure to the eventpoll ready list */struct list_head rdllink;/** Works together "struct eventpoll"->ovflist in keeping the* single linked chain of items.*/struct epitem *next;/* The file descriptor information this item refers to */struct epoll_filefd ffd;/* Number of active wait queue attached to poll operations */int nwait;/* List containing poll wait queues */struct list_head pwqlist;/* The "container" of this item */struct eventpoll *ep;/* List header used to link this item to the "struct file" items list */struct list_head fllink;/* wakeup_source used when EPOLLWAKEUP is set */struct wakeup_source __rcu *ws;/* The structure that describe the interested events and the source fd */struct epoll_event event;
};/** This structure is stored inside the "private_data" member of the file* structure and represents the main data structure for the eventpoll* interface.** Access to it is protected by the lock inside wq.*/
struct eventpoll {/** This mutex is used to ensure that files are not removed* while epoll is using them. This is held during the event* collection loop, the file cleanup path, the epoll file exit* code and the ctl operations.*/struct mutex mtx;/* Wait queue used by sys_epoll_wait() */wait_queue_head_t wq;/* Wait queue used by file->poll() */wait_queue_head_t poll_wait;/* List of ready file descriptors */struct list_head rdllist;/* RB tree root used to store monitored fd structs */struct rb_root_cached rbr;/** This is a single linked list that chains all the "struct epitem" that* happened while transferring ready events to userspace w/out* holding ->wq.lock.*/struct epitem *ovflist;/* wakeup_source used when ep_scan_ready_list is running */struct wakeup_source *ws;/* The user that created the eventpoll descriptor */struct user_struct *user;struct file *file;/* used to optimize loop detection check */int visited;struct list_head visited_list_link;#ifdef CONFIG_NET_RX_BUSY_POLL/* used to track busy poll napi_id */unsigned int napi_id;
#endif
};/* Wait structure used by the poll hooks */
struct eppoll_entry {/* List header used to link this structure to the "struct epitem" */struct list_head llink;/* The "base" pointer is set to the container "struct epitem" */struct epitem *base;/** Wait queue item that will be linked to the target file wait* queue head.*/wait_queue_entry_t wait;/* The wait queue head that linked the "wait" wait queue item */wait_queue_head_t *whead;
};/* Wrapper struct used by poll queueing */
struct ep_pqueue {poll_table pt;struct epitem *epi;
};/* Used by the ep_send_events() function as callback private data */
struct ep_send_events_data {int maxevents;struct epoll_event __user *events;int res;
};/** Configuration options available inside /proc/sys/fs/epoll/*/
/* Maximum number of epoll watched descriptors, per user */
static long max_user_watches __read_mostly;/** This mutex is used to serialize ep_free() and eventpoll_release_file().*/
static DEFINE_MUTEX(epmutex);/* Used to check for epoll file descriptor inclusion loops */
static struct nested_calls poll_loop_ncalls;/* Slab cache used to allocate "struct epitem" */
static struct kmem_cache *epi_cache __read_mostly;/* Slab cache used to allocate "struct eppoll_entry" */
static struct kmem_cache *pwq_cache __read_mostly;/* Visited nodes during ep_loop_check(), so we can unset them when we finish */
static LIST_HEAD(visited_list);/** List of files with newly added links, where we may need to limit the number* of emanating paths. Protected by the epmutex.*/
static LIST_HEAD(tfile_check_list);#ifdef CONFIG_SYSCTL#include <linux/sysctl.h>static long zero;
static long long_max = LONG_MAX;struct ctl_table epoll_table[] = {{.procname	= "max_user_watches",.data		= &max_user_watches,.maxlen		= sizeof(max_user_watches),.mode		= 0644,.proc_handler	= proc_doulongvec_minmax,.extra1		= &zero,.extra2		= &long_max,},{ }
};
#endif /* CONFIG_SYSCTL */static const struct file_operations eventpoll_fops;static inline int is_file_epoll(struct file *f)
{return f->f_op == &eventpoll_fops;
}/* Setup the structure that is used as key for the RB tree */
static inline void ep_set_ffd(struct epoll_filefd *ffd,struct file *file, int fd)
{ffd->file = file;ffd->fd = fd;
}/* Compare RB tree keys */
static inline int ep_cmp_ffd(struct epoll_filefd *p1,struct epoll_filefd *p2)
{return (p1->file > p2->file ? +1:(p1->file < p2->file ? -1 : p1->fd - p2->fd));
}/* Tells us if the item is currently linked */
static inline int ep_is_linked(struct epitem *epi)
{return !list_empty(&epi->rdllink);
}static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
{return container_of(p, struct eppoll_entry, wait);
}/* Get the "struct epitem" from a wait queue pointer */
static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
{return container_of(p, struct eppoll_entry, wait)->base;
}/* Get the "struct epitem" from an epoll queue wrapper */
static inline struct epitem *ep_item_from_epqueue(poll_table *p)
{return container_of(p, struct ep_pqueue, pt)->epi;
}/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
static inline int ep_op_has_event(int op)
{return op != EPOLL_CTL_DEL;
}/* Initialize the poll safe wake up structure */
static void ep_nested_calls_init(struct nested_calls *ncalls)
{INIT_LIST_HEAD(&ncalls->tasks_call_list);spin_lock_init(&ncalls->lock);
}/*** ep_events_available - Checks if ready events might be available.** @ep: Pointer to the eventpoll context.** Returns: Returns a value different than zero if ready events are available,*          or zero otherwise.*/
static inline int ep_events_available(struct eventpoll *ep)
{return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
}#ifdef CONFIG_NET_RX_BUSY_POLL
static bool ep_busy_loop_end(void *p, unsigned long start_time)
{struct eventpoll *ep = p;return ep_events_available(ep) || busy_loop_timeout(start_time);
}/** Busy poll if globally on and supporting sockets found && no events,* busy loop will return if need_resched or ep_events_available.** we must do our busy polling with irqs enabled*/
static void ep_busy_loop(struct eventpoll *ep, int nonblock)
{unsigned int napi_id = READ_ONCE(ep->napi_id);if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
}static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
{if (ep->napi_id)ep->napi_id = 0;
}/** Set epoll busy poll NAPI ID from sk.*/
static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
{struct eventpoll *ep;unsigned int napi_id;struct socket *sock;struct sock *sk;int err;if (!net_busy_loop_on())return;sock = sock_from_file(epi->ffd.file, &err);if (!sock)return;sk = sock->sk;if (!sk)return;napi_id = READ_ONCE(sk->sk_napi_id);ep = epi->ep;/* Non-NAPI IDs can be rejected*	or* Nothing to do if we already have this ID*/if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)return;/* record NAPI ID for use in next busy poll */ep->napi_id = napi_id;
}#elsestatic inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
{
}static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
{
}static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
{
}#endif /* CONFIG_NET_RX_BUSY_POLL *//*** ep_call_nested - Perform a bound (possibly) nested call, by checking*                  that the recursion limit is not exceeded, and that*                  the same nested call (by the meaning of same cookie) is*                  no re-entered.** @ncalls: Pointer to the nested_calls structure to be used for this call.* @max_nests: Maximum number of allowed nesting calls.* @nproc: Nested call core function pointer.* @priv: Opaque data to be passed to the @nproc callback.* @cookie: Cookie to be used to identify this nested call.* @ctx: This instance context.** Returns: Returns the code returned by the @nproc callback, or -1 if*          the maximum recursion limit has been exceeded.*/
static int ep_call_nested(struct nested_calls *ncalls, int max_nests,int (*nproc)(void *, void *, int), void *priv,void *cookie, void *ctx)
{int error, call_nests = 0;unsigned long flags;struct list_head *lsthead = &ncalls->tasks_call_list;struct nested_call_node *tncur;struct nested_call_node tnode;spin_lock_irqsave(&ncalls->lock, flags);/** Try to see if the current task is already inside this wakeup call.* We use a list here, since the population inside this set is always* very much limited.*/list_for_each_entry(tncur, lsthead, llink) {if (tncur->ctx == ctx &&(tncur->cookie == cookie || ++call_nests > max_nests)) {/** Ops ... loop detected or maximum nest level reached.* We abort this wake by breaking the cycle itself.*/error = -1;goto out_unlock;}}/* Add the current task and cookie to the list */tnode.ctx = ctx;tnode.cookie = cookie;list_add(&tnode.llink, lsthead);spin_unlock_irqrestore(&ncalls->lock, flags);/* Call the nested function */error = (*nproc)(priv, cookie, call_nests);/* Remove the current task from the list */spin_lock_irqsave(&ncalls->lock, flags);list_del(&tnode.llink);
out_unlock:spin_unlock_irqrestore(&ncalls->lock, flags);return error;
}/** As described in commit 0ccf831cb lockdep: annotate epoll* the use of wait queues used by epoll is done in a very controlled* manner. Wake ups can nest inside each other, but are never done* with the same locking. For example:**   dfd = socket(...);*   efd1 = epoll_create();*   efd2 = epoll_create();*   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);*   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);** When a packet arrives to the device underneath "dfd", the net code will* issue a wake_up() on its poll wake list. Epoll (efd1) has installed a* callback wakeup entry on that queue, and the wake_up() performed by the* "dfd" net code will end up in ep_poll_callback(). At this point epoll* (efd1) notices that it may have some event ready, so it needs to wake up* the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()* that ends up in another wake_up(), after having checked about the* recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to* avoid stack blasting.** When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle* this special case of epoll.*/
#ifdef CONFIG_DEBUG_LOCK_ALLOCstatic struct nested_calls poll_safewake_ncalls;static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
{unsigned long flags;wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);wake_up_locked_poll(wqueue, EPOLLIN);spin_unlock_irqrestore(&wqueue->lock, flags);return 0;
}static void ep_poll_safewake(wait_queue_head_t *wq)
{int this_cpu = get_cpu();ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);put_cpu();
}#elsestatic void ep_poll_safewake(wait_queue_head_t *wq)
{wake_up_poll(wq, EPOLLIN);
}#endifstatic void ep_remove_wait_queue(struct eppoll_entry *pwq)
{wait_queue_head_t *whead;rcu_read_lock();/** If it is cleared by POLLFREE, it should be rcu-safe.* If we read NULL we need a barrier paired with* smp_store_release() in ep_poll_callback(), otherwise* we rely on whead->lock.*/whead = smp_load_acquire(&pwq->whead);if (whead)remove_wait_queue(whead, &pwq->wait);rcu_read_unlock();
}/** This function unregisters poll callbacks from the associated file* descriptor.  Must be called with "mtx" held (or "epmutex" if called from* ep_free).*/
static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
{struct list_head *lsthead = &epi->pwqlist;struct eppoll_entry *pwq;while (!list_empty(lsthead)) {pwq = list_first_entry(lsthead, struct eppoll_entry, llink);list_del(&pwq->llink);ep_remove_wait_queue(pwq);kmem_cache_free(pwq_cache, pwq);}
}/* call only when ep->mtx is held */
static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
{return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
}/* call only when ep->mtx is held */
static inline void ep_pm_stay_awake(struct epitem *epi)
{struct wakeup_source *ws = ep_wakeup_source(epi);if (ws)__pm_stay_awake(ws);
}static inline bool ep_has_wakeup_source(struct epitem *epi)
{return rcu_access_pointer(epi->ws) ? true : false;
}/* call when ep->mtx cannot be held (ep_poll_callback) */
static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
{struct wakeup_source *ws;rcu_read_lock();ws = rcu_dereference(epi->ws);if (ws)__pm_stay_awake(ws);rcu_read_unlock();
}/*** ep_scan_ready_list - Scans the ready list in a way that makes possible for*                      the scan code, to call f_op->poll(). Also allows for*                      O(NumReady) performance.** @ep: Pointer to the epoll private data structure.* @sproc: Pointer to the scan callback.* @priv: Private opaque data passed to the @sproc callback.* @depth: The current depth of recursive f_op->poll calls.* @ep_locked: caller already holds ep->mtx** Returns: The same integer error code returned by the @sproc callback.*/
static __poll_t ep_scan_ready_list(struct eventpoll *ep,__poll_t (*sproc)(struct eventpoll *,struct list_head *, void *),void *priv, int depth, bool ep_locked)
{__poll_t res;int pwake = 0;struct epitem *epi, *nepi;LIST_HEAD(txlist);lockdep_assert_irqs_enabled();/** We need to lock this because we could be hit by* eventpoll_release_file() and epoll_ctl().*/if (!ep_locked)mutex_lock_nested(&ep->mtx, depth);/** Steal the ready list, and re-init the original one to the* empty list. Also, set ep->ovflist to NULL so that events* happening while looping w/out locks, are not lost. We cannot* have the poll callback to queue directly on ep->rdllist,* because we want the "sproc" callback to be able to do it* in a lockless way.*/spin_lock_irq(&ep->wq.lock);list_splice_init(&ep->rdllist, &txlist);ep->ovflist = NULL;spin_unlock_irq(&ep->wq.lock);/** Now call the callback function.*/res = (*sproc)(ep, &txlist, priv);spin_lock_irq(&ep->wq.lock);/** During the time we spent inside the "sproc" callback, some* other events might have been queued by the poll callback.* We re-insert them inside the main ready-list here.*/for (nepi = ep->ovflist; (epi = nepi) != NULL;nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {/** We need to check if the item is already in the list.* During the "sproc" callback execution time, items are* queued into ->ovflist but the "txlist" might already* contain them, and the list_splice() below takes care of them.*/if (!ep_is_linked(epi)) {list_add_tail(&epi->rdllink, &ep->rdllist);ep_pm_stay_awake(epi);}}/** We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after* releasing the lock, events will be queued in the normal way inside* ep->rdllist.*/ep->ovflist = EP_UNACTIVE_PTR;/** Quickly re-inject items left on "txlist".*/list_splice(&txlist, &ep->rdllist);__pm_relax(ep->ws);if (!list_empty(&ep->rdllist)) {/** Wake up (if active) both the eventpoll wait list and* the ->poll() wait list (delayed after we release the lock).*/if (waitqueue_active(&ep->wq))wake_up_locked(&ep->wq);if (waitqueue_active(&ep->poll_wait))pwake++;}spin_unlock_irq(&ep->wq.lock);if (!ep_locked)mutex_unlock(&ep->mtx);/* We have to call this outside the lock */if (pwake)ep_poll_safewake(&ep->poll_wait);return res;
}static void epi_rcu_free(struct rcu_head *head)
{struct epitem *epi = container_of(head, struct epitem, rcu);kmem_cache_free(epi_cache, epi);
}/** Removes a "struct epitem" from the eventpoll RB tree and deallocates* all the associated resources. Must be called with "mtx" held.*/
static int ep_remove(struct eventpoll *ep, struct epitem *epi)
{struct file *file = epi->ffd.file;lockdep_assert_irqs_enabled();/** Removes poll wait queue hooks.*/ep_unregister_pollwait(ep, epi);/* Remove the current item from the list of epoll hooks */spin_lock(&file->f_lock);list_del_rcu(&epi->fllink);spin_unlock(&file->f_lock);rb_erase_cached(&epi->rbn, &ep->rbr);spin_lock_irq(&ep->wq.lock);if (ep_is_linked(epi))list_del_init(&epi->rdllink);spin_unlock_irq(&ep->wq.lock);wakeup_source_unregister(ep_wakeup_source(epi));/** At this point it is safe to free the eventpoll item. Use the union* field epi->rcu, since we are trying to minimize the size of* 'struct epitem'. The 'rbn' field is no longer in use. Protected by* ep->mtx. The rcu read side, reverse_path_check_proc(), does not make* use of the rbn field.*/call_rcu(&epi->rcu, epi_rcu_free);atomic_long_dec(&ep->user->epoll_watches);return 0;
}static void ep_free(struct eventpoll *ep)
{struct rb_node *rbp;struct epitem *epi;/* We need to release all tasks waiting for these file */if (waitqueue_active(&ep->poll_wait))ep_poll_safewake(&ep->poll_wait);/** We need to lock this because we could be hit by* eventpoll_release_file() while we're freeing the "struct eventpoll".* We do not need to hold "ep->mtx" here because the epoll file* is on the way to be removed and no one has references to it* anymore. The only hit might come from eventpoll_release_file() but* holding "epmutex" is sufficient here.*/mutex_lock(&epmutex);/** Walks through the whole tree by unregistering poll callbacks.*/for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {epi = rb_entry(rbp, struct epitem, rbn);ep_unregister_pollwait(ep, epi);cond_resched();}/** Walks through the whole tree by freeing each "struct epitem". At this* point we are sure no poll callbacks will be lingering around, and also by* holding "epmutex" we can be sure that no file cleanup code will hit* us during this operation. So we can avoid the lock on "ep->wq.lock".* We do not need to lock ep->mtx, either, we only do it to prevent* a lockdep warning.*/mutex_lock(&ep->mtx);while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {epi = rb_entry(rbp, struct epitem, rbn);ep_remove(ep, epi);cond_resched();}mutex_unlock(&ep->mtx);mutex_unlock(&epmutex);mutex_destroy(&ep->mtx);free_uid(ep->user);wakeup_source_unregister(ep->ws);kfree(ep);
}static int ep_eventpoll_release(struct inode *inode, struct file *file)
{struct eventpoll *ep = file->private_data;if (ep)ep_free(ep);return 0;
}static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,void *priv);
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,poll_table *pt);/** Differs from ep_eventpoll_poll() in that internal callers already have* the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()* is correctly annotated.*/
static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,int depth)
{struct eventpoll *ep;bool locked;pt->_key = epi->event.events;if (!is_file_epoll(epi->ffd.file))return vfs_poll(epi->ffd.file, pt) & epi->event.events;ep = epi->ffd.file->private_data;poll_wait(epi->ffd.file, &ep->poll_wait, pt);locked = pt && (pt->_qproc == ep_ptable_queue_proc);return ep_scan_ready_list(epi->ffd.file->private_data,ep_read_events_proc, &depth, depth,locked) & epi->event.events;
}static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,void *priv)
{struct epitem *epi, *tmp;poll_table pt;int depth = *(int *)priv;init_poll_funcptr(&pt, NULL);depth++;list_for_each_entry_safe(epi, tmp, head, rdllink) {if (ep_item_poll(epi, &pt, depth)) {return EPOLLIN | EPOLLRDNORM;} else {/** Item has been dropped into the ready list by the poll* callback, but it's not actually ready, as far as* caller requested events goes. We can remove it here.*/__pm_relax(ep_wakeup_source(epi));list_del_init(&epi->rdllink);}}return 0;
}static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
{struct eventpoll *ep = file->private_data;int depth = 0;/* Insert inside our poll wait queue */poll_wait(file, &ep->poll_wait, wait);/** Proceed to find out if wanted events are really available inside* the ready list.*/return ep_scan_ready_list(ep, ep_read_events_proc,&depth, depth, false);
}#ifdef CONFIG_PROC_FS
static void ep_show_fdinfo(struct seq_file *m, struct file *f)
{struct eventpoll *ep = f->private_data;struct rb_node *rbp;mutex_lock(&ep->mtx);for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {struct epitem *epi = rb_entry(rbp, struct epitem, rbn);struct inode *inode = file_inode(epi->ffd.file);seq_printf(m, "tfd: %8d events: %8x data: %16llx "" pos:%lli ino:%lx sdev:%x\n",epi->ffd.fd, epi->event.events,(long long)epi->event.data,(long long)epi->ffd.file->f_pos,inode->i_ino, inode->i_sb->s_dev);if (seq_has_overflowed(m))break;}mutex_unlock(&ep->mtx);
}
#endif/* File callbacks that implement the eventpoll file behaviour */
static const struct file_operations eventpoll_fops = {
#ifdef CONFIG_PROC_FS.show_fdinfo	= ep_show_fdinfo,
#endif.release	= ep_eventpoll_release,.poll		= ep_eventpoll_poll,.llseek		= noop_llseek,
};/** This is called from eventpoll_release() to unlink files from the eventpoll* interface. We need to have this facility to cleanup correctly files that are* closed without being removed from the eventpoll interface.*/
void eventpoll_release_file(struct file *file)
{struct eventpoll *ep;struct epitem *epi, *next;/** We don't want to get "file->f_lock" because it is not* necessary. It is not necessary because we're in the "struct file"* cleanup path, and this means that no one is using this file anymore.* So, for example, epoll_ctl() cannot hit here since if we reach this* point, the file counter already went to zero and fget() would fail.* The only hit might come from ep_free() but by holding the mutex* will correctly serialize the operation. We do need to acquire* "ep->mtx" after "epmutex" because ep_remove() requires it when called* from anywhere but ep_free().** Besides, ep_remove() acquires the lock, so we can't hold it here.*/mutex_lock(&epmutex);list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {ep = epi->ep;mutex_lock_nested(&ep->mtx, 0);ep_remove(ep, epi);mutex_unlock(&ep->mtx);}mutex_unlock(&epmutex);
}static int ep_alloc(struct eventpoll **pep)
{int error;struct user_struct *user;struct eventpoll *ep;user = get_current_user();error = -ENOMEM;ep = kzalloc(sizeof(*ep), GFP_KERNEL);if (unlikely(!ep))goto free_uid;mutex_init(&ep->mtx);init_waitqueue_head(&ep->wq);init_waitqueue_head(&ep->poll_wait);INIT_LIST_HEAD(&ep->rdllist);ep->rbr = RB_ROOT_CACHED;ep->ovflist = EP_UNACTIVE_PTR;ep->user = user;*pep = ep;return 0;free_uid:free_uid(user);return error;
}/** Search the file inside the eventpoll tree. The RB tree operations* are protected by the "mtx" mutex, and ep_find() must be called with* "mtx" held.*/
static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
{int kcmp;struct rb_node *rbp;struct epitem *epi, *epir = NULL;struct epoll_filefd ffd;ep_set_ffd(&ffd, file, fd);for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {epi = rb_entry(rbp, struct epitem, rbn);kcmp = ep_cmp_ffd(&ffd, &epi->ffd);if (kcmp > 0)rbp = rbp->rb_right;else if (kcmp < 0)rbp = rbp->rb_left;else {epir = epi;break;}}return epir;
}#ifdef CONFIG_CHECKPOINT_RESTORE
static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
{struct rb_node *rbp;struct epitem *epi;for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {epi = rb_entry(rbp, struct epitem, rbn);if (epi->ffd.fd == tfd) {if (toff == 0)return epi;elsetoff--;}cond_resched();}return NULL;
}struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,unsigned long toff)
{struct file *file_raw;struct eventpoll *ep;struct epitem *epi;if (!is_file_epoll(file))return ERR_PTR(-EINVAL);ep = file->private_data;mutex_lock(&ep->mtx);epi = ep_find_tfd(ep, tfd, toff);if (epi)file_raw = epi->ffd.file;elsefile_raw = ERR_PTR(-ENOENT);mutex_unlock(&ep->mtx);return file_raw;
}
#endif /* CONFIG_CHECKPOINT_RESTORE *//** This is the callback that is passed to the wait queue wakeup* mechanism. It is called by the stored file descriptors when they* have events to report.*/
static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
{int pwake = 0;unsigned long flags;struct epitem *epi = ep_item_from_wait(wait);struct eventpoll *ep = epi->ep;__poll_t pollflags = key_to_poll(key);int ewake = 0;spin_lock_irqsave(&ep->wq.lock, flags);ep_set_busy_poll_napi_id(epi);/** If the event mask does not contain any poll(2) event, we consider the* descriptor to be disabled. This condition is likely the effect of the* EPOLLONESHOT bit that disables the descriptor when an event is received,* until the next EPOLL_CTL_MOD will be issued.*/if (!(epi->event.events & ~EP_PRIVATE_BITS))goto out_unlock;/** Check the events coming with the callback. At this stage, not* every device reports the events in the "key" parameter of the* callback. We need to be able to handle both cases here, hence the* test for "key" != NULL before the event match test.*/if (pollflags && !(pollflags & epi->event.events))goto out_unlock;/** If we are transferring events to userspace, we can hold no locks* (because we're accessing user memory, and because of linux f_op->poll()* semantics). All the events that happen during that period of time are* chained in ep->ovflist and requeued later on.*/if (ep->ovflist != EP_UNACTIVE_PTR) {if (epi->next == EP_UNACTIVE_PTR) {epi->next = ep->ovflist;ep->ovflist = epi;if (epi->ws) {/** Activate ep->ws since epi->ws may get* deactivated at any time.*/__pm_stay_awake(ep->ws);}}goto out_unlock;}/* If this file is already in the ready list we exit soon */if (!ep_is_linked(epi)) {list_add_tail(&epi->rdllink, &ep->rdllist);ep_pm_stay_awake_rcu(epi);}/** Wake up ( if active ) both the eventpoll wait list and the ->poll()* wait list.*/if (waitqueue_active(&ep->wq)) {if ((epi->event.events & EPOLLEXCLUSIVE) &&!(pollflags & POLLFREE)) {switch (pollflags & EPOLLINOUT_BITS) {case EPOLLIN:if (epi->event.events & EPOLLIN)ewake = 1;break;case EPOLLOUT:if (epi->event.events & EPOLLOUT)ewake = 1;break;case 0:ewake = 1;break;}}wake_up_locked(&ep->wq);}if (waitqueue_active(&ep->poll_wait))pwake++;out_unlock:spin_unlock_irqrestore(&ep->wq.lock, flags);/* We have to call this outside the lock */if (pwake)ep_poll_safewake(&ep->poll_wait);if (!(epi->event.events & EPOLLEXCLUSIVE))ewake = 1;if (pollflags & POLLFREE) {/** If we race with ep_remove_wait_queue() it can miss* ->whead = NULL and do another remove_wait_queue() after* us, so we can't use __remove_wait_queue().*/list_del_init(&wait->entry);/** ->whead != NULL protects us from the race with ep_free()* or ep_remove(), ep_remove_wait_queue() takes whead->lock* held by the caller. Once we nullify it, nothing protects* ep/epi or even wait.*/smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);}return ewake;
}/** This is the callback that is used to add our wait queue to the* target file wakeup lists.*/
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,poll_table *pt)
{struct epitem *epi = ep_item_from_epqueue(pt);struct eppoll_entry *pwq;if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);pwq->whead = whead;pwq->base = epi;if (epi->event.events & EPOLLEXCLUSIVE)add_wait_queue_exclusive(whead, &pwq->wait);elseadd_wait_queue(whead, &pwq->wait);list_add_tail(&pwq->llink, &epi->pwqlist);epi->nwait++;} else {/* We have to signal that an error occurred */epi->nwait = -1;}
}static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
{int kcmp;struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;struct epitem *epic;bool leftmost = true;while (*p) {parent = *p;epic = rb_entry(parent, struct epitem, rbn);kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);if (kcmp > 0) {p = &parent->rb_right;leftmost = false;} elsep = &parent->rb_left;}rb_link_node(&epi->rbn, parent, p);rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
}#define PATH_ARR_SIZE 5
/** These are the number paths of length 1 to 5, that we are allowing to emanate* from a single file of interest. For example, we allow 1000 paths of length* 1, to emanate from each file of interest. This essentially represents the* potential wakeup paths, which need to be limited in order to avoid massive* uncontrolled wakeup storms. The common use case should be a single ep which* is connected to n file sources. In this case each file source has 1 path* of length 1. Thus, the numbers below should be more than sufficient. These* path limits are enforced during an EPOLL_CTL_ADD operation, since a modify* and delete can't add additional paths. Protected by the epmutex.*/
static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
static int path_count[PATH_ARR_SIZE];static int path_count_inc(int nests)
{/* Allow an arbitrary number of depth 1 paths */if (nests == 0)return 0;if (++path_count[nests] > path_limits[nests])return -1;return 0;
}static void path_count_init(void)
{int i;for (i = 0; i < PATH_ARR_SIZE; i++)path_count[i] = 0;
}static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
{int error = 0;struct file *file = priv;struct file *child_file;struct epitem *epi;/* CTL_DEL can remove links here, but that can't increase our count */rcu_read_lock();list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {child_file = epi->ep->file;if (is_file_epoll(child_file)) {if (list_empty(&child_file->f_ep_links)) {if (path_count_inc(call_nests)) {error = -1;break;}} else {error = ep_call_nested(&poll_loop_ncalls,EP_MAX_NESTS,reverse_path_check_proc,child_file, child_file,current);}if (error != 0)break;} else {printk(KERN_ERR "reverse_path_check_proc: ""file is not an ep!\n");}}rcu_read_unlock();return error;
}/*** reverse_path_check - The tfile_check_list is list of file *, which have*                      links that are proposed to be newly added. We need to*                      make sure that those added links don't add too many*                      paths such that we will spend all our time waking up*                      eventpoll objects.** Returns: Returns zero if the proposed links don't create too many paths,*	    -1 otherwise.*/
static int reverse_path_check(void)
{int error = 0;struct file *current_file;/* let's call this for all tfiles */list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {path_count_init();error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,reverse_path_check_proc, current_file,current_file, current);if (error)break;}return error;
}static int ep_create_wakeup_source(struct epitem *epi)
{const char *name;struct wakeup_source *ws;if (!epi->ep->ws) {epi->ep->ws = wakeup_source_register("eventpoll");if (!epi->ep->ws)return -ENOMEM;}name = epi->ffd.file->f_path.dentry->d_name.name;ws = wakeup_source_register(name);if (!ws)return -ENOMEM;rcu_assign_pointer(epi->ws, ws);return 0;
}/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
static noinline void ep_destroy_wakeup_source(struct epitem *epi)
{struct wakeup_source *ws = ep_wakeup_source(epi);RCU_INIT_POINTER(epi->ws, NULL);/** wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is* used internally by wakeup_source_remove, too (called by* wakeup_source_unregister), so we cannot use call_rcu*/synchronize_rcu();wakeup_source_unregister(ws);
}/** Must be called with "mtx" held.*/
static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,struct file *tfile, int fd, int full_check)
{int error, pwake = 0;__poll_t revents;long user_watches;struct epitem *epi;struct ep_pqueue epq;lockdep_assert_irqs_enabled();user_watches = atomic_long_read(&ep->user->epoll_watches);if (unlikely(user_watches >= max_user_watches))return -ENOSPC;if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))return -ENOMEM;/* Item initialization follow here ... */INIT_LIST_HEAD(&epi->rdllink);INIT_LIST_HEAD(&epi->fllink);INIT_LIST_HEAD(&epi->pwqlist);epi->ep = ep;ep_set_ffd(&epi->ffd, tfile, fd);epi->event = *event;epi->nwait = 0;epi->next = EP_UNACTIVE_PTR;if (epi->event.events & EPOLLWAKEUP) {error = ep_create_wakeup_source(epi);if (error)goto error_create_wakeup_source;} else {RCU_INIT_POINTER(epi->ws, NULL);}/* Initialize the poll table using the queue callback */epq.epi = epi;init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);/** Attach the item to the poll hooks and get current event bits.* We can safely use the file* here because its usage count has* been increased by the caller of this function. Note that after* this operation completes, the poll callback can start hitting* the new item.*/revents = ep_item_poll(epi, &epq.pt, 1);/** We have to check if something went wrong during the poll wait queue* install process. Namely an allocation for a wait queue failed due* high memory pressure.*/error = -ENOMEM;if (epi->nwait < 0)goto error_unregister;/* Add the current item to the list of active epoll hook for this file */spin_lock(&tfile->f_lock);list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);spin_unlock(&tfile->f_lock);/** Add the current item to the RB tree. All RB tree operations are* protected by "mtx", and ep_insert() is called with "mtx" held.*/ep_rbtree_insert(ep, epi);/* now check if we've created too many backpaths */error = -EINVAL;if (full_check && reverse_path_check())goto error_remove_epi;/* We have to drop the new item inside our item list to keep track of it */spin_lock_irq(&ep->wq.lock);/* record NAPI ID of new item if present */ep_set_busy_poll_napi_id(epi);/* If the file is already "ready" we drop it inside the ready list */if (revents && !ep_is_linked(epi)) {list_add_tail(&epi->rdllink, &ep->rdllist);ep_pm_stay_awake(epi);/* Notify waiting tasks that events are available */if (waitqueue_active(&ep->wq))wake_up_locked(&ep->wq);if (waitqueue_active(&ep->poll_wait))pwake++;}spin_unlock_irq(&ep->wq.lock);atomic_long_inc(&ep->user->epoll_watches);/* We have to call this outside the lock */if (pwake)ep_poll_safewake(&ep->poll_wait);return 0;error_remove_epi:spin_lock(&tfile->f_lock);list_del_rcu(&epi->fllink);spin_unlock(&tfile->f_lock);rb_erase_cached(&epi->rbn, &ep->rbr);error_unregister:ep_unregister_pollwait(ep, epi);/** We need to do this because an event could have been arrived on some* allocated wait queue. Note that we don't care about the ep->ovflist* list, since that is used/cleaned only inside a section bound by "mtx".* And ep_insert() is called with "mtx" held.*/spin_lock_irq(&ep->wq.lock);if (ep_is_linked(epi))list_del_init(&epi->rdllink);spin_unlock_irq(&ep->wq.lock);wakeup_source_unregister(ep_wakeup_source(epi));error_create_wakeup_source:kmem_cache_free(epi_cache, epi);return error;
}/** Modify the interest event mask by dropping an event if the new mask* has a match in the current file status. Must be called with "mtx" held.*/
static int ep_modify(struct eventpoll *ep, struct epitem *epi,const struct epoll_event *event)
{int pwake = 0;poll_table pt;lockdep_assert_irqs_enabled();init_poll_funcptr(&pt, NULL);/** Set the new event interest mask before calling f_op->poll();* otherwise we might miss an event that happens between the* f_op->poll() call and the new event set registering.*/epi->event.events = event->events; /* need barrier below */epi->event.data = event->data; /* protected by mtx */if (epi->event.events & EPOLLWAKEUP) {if (!ep_has_wakeup_source(epi))ep_create_wakeup_source(epi);} else if (ep_has_wakeup_source(epi)) {ep_destroy_wakeup_source(epi);}/** The following barrier has two effects:** 1) Flush epi changes above to other CPUs.  This ensures*    we do not miss events from ep_poll_callback if an*    event occurs immediately after we call f_op->poll().*    We need this because we did not take ep->wq.lock while*    changing epi above (but ep_poll_callback does take*    ep->wq.lock).** 2) We also need to ensure we do not miss _past_ events*    when calling f_op->poll().  This barrier also*    pairs with the barrier in wq_has_sleeper (see*    comments for wq_has_sleeper).** This barrier will now guarantee ep_poll_callback or f_op->poll* (or both) will notice the readiness of an item.*/smp_mb();/** Get current event bits. We can safely use the file* here because* its usage count has been increased by the caller of this function.* If the item is "hot" and it is not registered inside the ready* list, push it inside.*/if (ep_item_poll(epi, &pt, 1)) {spin_lock_irq(&ep->wq.lock);if (!ep_is_linked(epi)) {list_add_tail(&epi->rdllink, &ep->rdllist);ep_pm_stay_awake(epi);/* Notify waiting tasks that events are available */if (waitqueue_active(&ep->wq))wake_up_locked(&ep->wq);if (waitqueue_active(&ep->poll_wait))pwake++;}spin_unlock_irq(&ep->wq.lock);}/* We have to call this outside the lock */if (pwake)ep_poll_safewake(&ep->poll_wait);return 0;
}static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,void *priv)
{struct ep_send_events_data *esed = priv;__poll_t revents;struct epitem *epi;struct epoll_event __user *uevent;struct wakeup_source *ws;poll_table pt;init_poll_funcptr(&pt, NULL);/** We can loop without lock because we are passed a task private list.* Items cannot vanish during the loop because ep_scan_ready_list() is* holding "mtx" during this call.*/for (esed->res = 0, uevent = esed->events;!list_empty(head) && esed->res < esed->maxevents;) {epi = list_first_entry(head, struct epitem, rdllink);/** Activate ep->ws before deactivating epi->ws to prevent* triggering auto-suspend here (in case we reactive epi->ws* below).** This could be rearranged to delay the deactivation of epi->ws* instead, but then epi->ws would temporarily be out of sync* with ep_is_linked().*/ws = ep_wakeup_source(epi);if (ws) {if (ws->active)__pm_stay_awake(ep->ws);__pm_relax(ws);}list_del_init(&epi->rdllink);revents = ep_item_poll(epi, &pt, 1);/** If the event mask intersect the caller-requested one,* deliver the event to userspace. Again, ep_scan_ready_list()* is holding "mtx", so no operations coming from userspace* can change the item.*/if (revents) {if (__put_user(revents, &uevent->events) ||__put_user(epi->event.data, &uevent->data)) {list_add(&epi->rdllink, head);ep_pm_stay_awake(epi);if (!esed->res)esed->res = -EFAULT;return 0;}esed->res++;uevent++;if (epi->event.events & EPOLLONESHOT)epi->event.events &= EP_PRIVATE_BITS;else if (!(epi->event.events & EPOLLET)) {/** If this file has been added with Level* Trigger mode, we need to insert back inside* the ready list, so that the next call to* epoll_wait() will check again the events* availability. At this point, no one can insert* into ep->rdllist besides us. The epoll_ctl()* callers are locked out by* ep_scan_ready_list() holding "mtx" and the* poll callback will queue them in ep->ovflist.*/list_add_tail(&epi->rdllink, &ep->rdllist);ep_pm_stay_awake(epi);}}}return 0;
}static int ep_send_events(struct eventpoll *ep,struct epoll_event __user *events, int maxevents)
{struct ep_send_events_data esed;esed.maxevents = maxevents;esed.events = events;ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);return esed.res;
}static inline struct timespec64 ep_set_mstimeout(long ms)
{struct timespec64 now, ts = {.tv_sec = ms / MSEC_PER_SEC,.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),};ktime_get_ts64(&now);return timespec64_add_safe(now, ts);
}/*** ep_poll - Retrieves ready events, and delivers them to the caller supplied*           event buffer.** @ep: Pointer to the eventpoll context.* @events: Pointer to the userspace buffer where the ready events should be*          stored.* @maxevents: Size (in terms of number of events) of the caller event buffer.* @timeout: Maximum timeout for the ready events fetch operation, in*           milliseconds. If the @timeout is zero, the function will not block,*           while if the @timeout is less than zero, the function will block*           until at least one event has been retrieved (or an error*           occurred).** Returns: Returns the number of ready events which have been fetched, or an*          error code, in case of error.*/
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,int maxevents, long timeout)
{int res = 0, eavail, timed_out = 0;u64 slack = 0;wait_queue_entry_t wait;ktime_t expires, *to = NULL;lockdep_assert_irqs_enabled();if (timeout > 0) {struct timespec64 end_time = ep_set_mstimeout(timeout);slack = select_estimate_accuracy(&end_time);to = &expires;*to = timespec64_to_ktime(end_time);} else if (timeout == 0) {/** Avoid the unnecessary trip to the wait queue loop, if the* caller specified a non blocking operation.*/timed_out = 1;spin_lock_irq(&ep->wq.lock);goto check_events;}fetch_events:if (!ep_events_available(ep))ep_busy_loop(ep, timed_out);spin_lock_irq(&ep->wq.lock);if (!ep_events_available(ep)) {/** Busy poll timed out.  Drop NAPI ID for now, we can add* it back in when we have moved a socket with a valid NAPI* ID onto the ready list.*/ep_reset_busy_poll_napi_id(ep);/** We don't have any available event to return to the caller.* We need to sleep here, and we will be wake up by* ep_poll_callback() when events will become available.*/init_waitqueue_entry(&wait, current);__add_wait_queue_exclusive(&ep->wq, &wait);for (;;) {/** We don't want to sleep if the ep_poll_callback() sends us* a wakeup in between. That's why we set the task state* to TASK_INTERRUPTIBLE before doing the checks.*/set_current_state(TASK_INTERRUPTIBLE);/** Always short-circuit for fatal signals to allow* threads to make a timely exit without the chance of* finding more events available and fetching* repeatedly.*/if (fatal_signal_pending(current)) {res = -EINTR;break;}if (ep_events_available(ep) || timed_out)break;if (signal_pending(current)) {res = -EINTR;break;}spin_unlock_irq(&ep->wq.lock);if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))timed_out = 1;spin_lock_irq(&ep->wq.lock);}__remove_wait_queue(&ep->wq, &wait);__set_current_state(TASK_RUNNING);}
check_events:/* Is it worth to try to dig for events ? */eavail = ep_events_available(ep);spin_unlock_irq(&ep->wq.lock);/** Try to transfer events to user space. In case we get 0 events and* there's still timeout left over, we go trying again in search of* more luck.*/if (!res && eavail &&!(res = ep_send_events(ep, events, maxevents)) && !timed_out)goto fetch_events;return res;
}/*** ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()*                      API, to verify that adding an epoll file inside another*                      epoll structure, does not violate the constraints, in*                      terms of closed loops, or too deep chains (which can*                      result in excessive stack usage).** @priv: Pointer to the epoll file to be currently checked.* @cookie: Original cookie for this call. This is the top-of-the-chain epoll*          data structure pointer.* @call_nests: Current dept of the @ep_call_nested() call stack.** Returns: Returns zero if adding the epoll @file inside current epoll*          structure @ep does not violate the constraints, or -1 otherwise.*/
static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
{int error = 0;struct file *file = priv;struct eventpoll *ep = file->private_data;struct eventpoll *ep_tovisit;struct rb_node *rbp;struct epitem *epi;mutex_lock_nested(&ep->mtx, call_nests + 1);ep->visited = 1;list_add(&ep->visited_list_link, &visited_list);for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {epi = rb_entry(rbp, struct epitem, rbn);if (unlikely(is_file_epoll(epi->ffd.file))) {ep_tovisit = epi->ffd.file->private_data;if (ep_tovisit->visited)continue;error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,ep_loop_check_proc, epi->ffd.file,ep_tovisit, current);if (error != 0)break;} else {/** If we've reached a file that is not associated with* an ep, then we need to check if the newly added* links are going to add too many wakeup paths. We do* this by adding it to the tfile_check_list, if it's* not already there, and calling reverse_path_check()* during ep_insert().*/if (list_empty(&epi->ffd.file->f_tfile_llink))list_add(&epi->ffd.file->f_tfile_llink,&tfile_check_list);}}mutex_unlock(&ep->mtx);return error;
}/*** ep_loop_check - Performs a check to verify that adding an epoll file (@file)*                 another epoll file (represented by @ep) does not create*                 closed loops or too deep chains.** @ep: Pointer to the epoll private data structure.* @file: Pointer to the epoll file to be checked.** Returns: Returns zero if adding the epoll @file inside current epoll*          structure @ep does not violate the constraints, or -1 otherwise.*/
static int ep_loop_check(struct eventpoll *ep, struct file *file)
{int ret;struct eventpoll *ep_cur, *ep_next;ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,ep_loop_check_proc, file, ep, current);/* clear visited list */list_for_each_entry_safe(ep_cur, ep_next, &visited_list,visited_list_link) {ep_cur->visited = 0;list_del(&ep_cur->visited_list_link);}return ret;
}static void clear_tfile_check_list(void)
{struct file *file;/* first clear the tfile_check_list */while (!list_empty(&tfile_check_list)) {file = list_first_entry(&tfile_check_list, struct file,f_tfile_llink);list_del_init(&file->f_tfile_llink);}INIT_LIST_HEAD(&tfile_check_list);
}/** Open an eventpoll file descriptor.*/
static int do_epoll_create(int flags)
{int error, fd;struct eventpoll *ep = NULL;struct file *file;/* Check the EPOLL_* constant for consistency.  */BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);if (flags & ~EPOLL_CLOEXEC)return -EINVAL;/** Create the internal data structure ("struct eventpoll").*/error = ep_alloc(&ep);if (error < 0)return error;/** Creates all the items needed to setup an eventpoll file. That is,* a file structure and a free file descriptor.*/fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));if (fd < 0) {error = fd;goto out_free_ep;}file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,O_RDWR | (flags & O_CLOEXEC));if (IS_ERR(file)) {error = PTR_ERR(file);goto out_free_fd;}ep->file = file;fd_install(fd, file);return fd;out_free_fd:put_unused_fd(fd);
out_free_ep:ep_free(ep);return error;
}SYSCALL_DEFINE1(epoll_create1, int, flags)
{return do_epoll_create(flags);
}SYSCALL_DEFINE1(epoll_create, int, size)
{if (size <= 0)return -EINVAL;return do_epoll_create(0);
}/** The following function implements the controller interface for* the eventpoll file that enables the insertion/removal/change of* file descriptors inside the interest set.*/
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,struct epoll_event __user *, event)
{int error;int full_check = 0;struct fd f, tf;struct eventpoll *ep;struct epitem *epi;struct epoll_event epds;struct eventpoll *tep = NULL;error = -EFAULT;if (ep_op_has_event(op) &&copy_from_user(&epds, event, sizeof(struct epoll_event)))goto error_return;error = -EBADF;f = fdget(epfd);if (!f.file)goto error_return;/* Get the "struct file *" for the target file */tf = fdget(fd);if (!tf.file)goto error_fput;/* The target file descriptor must support poll */error = -EPERM;if (!file_can_poll(tf.file))goto error_tgt_fput;/* Check if EPOLLWAKEUP is allowed */if (ep_op_has_event(op))ep_take_care_of_epollwakeup(&epds);/** We have to check that the file structure underneath the file descriptor* the user passed to us _is_ an eventpoll file. And also we do not permit* adding an epoll file descriptor inside itself.*/error = -EINVAL;if (f.file == tf.file || !is_file_epoll(f.file))goto error_tgt_fput;/** epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,* so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.* Also, we do not currently supported nested exclusive wakeups.*/if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {if (op == EPOLL_CTL_MOD)goto error_tgt_fput;if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))goto error_tgt_fput;}/** At this point it is safe to assume that the "private_data" contains* our own data structure.*/ep = f.file->private_data;/** When we insert an epoll file descriptor, inside another epoll file* descriptor, there is the change of creating closed loops, which are* better be handled here, than in more critical paths. While we are* checking for loops we also determine the list of files reachable* and hang them on the tfile_check_list, so we can check that we* haven't created too many possible wakeup paths.** We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when* the epoll file descriptor is attaching directly to a wakeup source,* unless the epoll file descriptor is nested. The purpose of taking the* 'epmutex' on add is to prevent complex toplogies such as loops and* deep wakeup paths from forming in parallel through multiple* EPOLL_CTL_ADD operations.*/mutex_lock_nested(&ep->mtx, 0);if (op == EPOLL_CTL_ADD) {if (!list_empty(&f.file->f_ep_links) ||is_file_epoll(tf.file)) {full_check = 1;mutex_unlock(&ep->mtx);mutex_lock(&epmutex);if (is_file_epoll(tf.file)) {error = -ELOOP;if (ep_loop_check(ep, tf.file) != 0) {clear_tfile_check_list();goto error_tgt_fput;}} elselist_add(&tf.file->f_tfile_llink,&tfile_check_list);mutex_lock_nested(&ep->mtx, 0);if (is_file_epoll(tf.file)) {tep = tf.file->private_data;mutex_lock_nested(&tep->mtx, 1);}}}/** Try to lookup the file inside our RB tree, Since we grabbed "mtx"* above, we can be sure to be able to use the item looked up by* ep_find() till we release the mutex.*/epi = ep_find(ep, tf.file, fd);error = -EINVAL;switch (op) {case EPOLL_CTL_ADD:if (!epi) {epds.events |= EPOLLERR | EPOLLHUP;error = ep_insert(ep, &epds, tf.file, fd, full_check);} elseerror = -EEXIST;if (full_check)clear_tfile_check_list();break;case EPOLL_CTL_DEL:if (epi)error = ep_remove(ep, epi);elseerror = -ENOENT;break;case EPOLL_CTL_MOD:if (epi) {if (!(epi->event.events & EPOLLEXCLUSIVE)) {epds.events |= EPOLLERR | EPOLLHUP;error = ep_modify(ep, epi, &epds);}} elseerror = -ENOENT;break;}if (tep != NULL)mutex_unlock(&tep->mtx);mutex_unlock(&ep->mtx);error_tgt_fput:if (full_check)mutex_unlock(&epmutex);fdput(tf);
error_fput:fdput(f);
error_return:return error;
}/** Implement the event wait interface for the eventpoll file. It is the kernel* part of the user space epoll_wait(2).*/
static int do_epoll_wait(int epfd, struct epoll_event __user *events,int maxevents, int timeout)
{int error;struct fd f;struct eventpoll *ep;/* The maximum number of event must be greater than zero */if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)return -EINVAL;/* Verify that the area passed by the user is writeable */if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))return -EFAULT;/* Get the "struct file *" for the eventpoll file */f = fdget(epfd);if (!f.file)return -EBADF;/** We have to check that the file structure underneath the fd* the user passed to us _is_ an eventpoll file.*/error = -EINVAL;if (!is_file_epoll(f.file))goto error_fput;/** At this point it is safe to assume that the "private_data" contains* our own data structure.*/ep = f.file->private_data;/* Time to fish for events ... */error = ep_poll(ep, events, maxevents, timeout);error_fput:fdput(f);return error;
}SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,int, maxevents, int, timeout)
{return do_epoll_wait(epfd, events, maxevents, timeout);
}/** Implement the event wait interface for the eventpoll file. It is the kernel* part of the user space epoll_pwait(2).*/
SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,int, maxevents, int, timeout, const sigset_t __user *, sigmask,size_t, sigsetsize)
{int error;sigset_t ksigmask, sigsaved;/** If the caller wants a certain signal mask to be set during the wait,* we apply it here.*/if (sigmask) {if (sigsetsize != sizeof(sigset_t))return -EINVAL;if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))return -EFAULT;sigsaved = current->blocked;set_current_blocked(&ksigmask);}error = do_epoll_wait(epfd, events, maxevents, timeout);/** If we changed the signal mask, we need to restore the original one.* In case we've got a signal while waiting, we do not restore the* signal mask yet, and we allow do_signal() to deliver the signal on* the way back to userspace, before the signal mask is restored.*/if (sigmask) {if (error == -EINTR) {memcpy(&current->saved_sigmask, &sigsaved,sizeof(sigsaved));set_restore_sigmask();} elseset_current_blocked(&sigsaved);}return error;
}#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,struct epoll_event __user *, events,int, maxevents, int, timeout,const compat_sigset_t __user *, sigmask,compat_size_t, sigsetsize)
{long err;sigset_t ksigmask, sigsaved;/** If the caller wants a certain signal mask to be set during the wait,* we apply it here.*/if (sigmask) {if (sigsetsize != sizeof(compat_sigset_t))return -EINVAL;if (get_compat_sigset(&ksigmask, sigmask))return -EFAULT;sigsaved = current->blocked;set_current_blocked(&ksigmask);}err = do_epoll_wait(epfd, events, maxevents, timeout);/** If we changed the signal mask, we need to restore the original one.* In case we've got a signal while waiting, we do not restore the* signal mask yet, and we allow do_signal() to deliver the signal on* the way back to userspace, before the signal mask is restored.*/if (sigmask) {if (err == -EINTR) {memcpy(&current->saved_sigmask, &sigsaved,sizeof(sigsaved));set_restore_sigmask();} elseset_current_blocked(&sigsaved);}return err;
}
#endifstatic int __init eventpoll_init(void)
{struct sysinfo si;si_meminfo(&si);/** Allows top 4% of lomem to be allocated for epoll watches (per user).*/max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /EP_ITEM_COST;BUG_ON(max_user_watches < 0);/** Initialize the structure used to perform epoll file descriptor* inclusion loops checks.*/ep_nested_calls_init(&poll_loop_ncalls);#ifdef CONFIG_DEBUG_LOCK_ALLOC/* Initialize the structure used to perform safe poll wait head wake ups */ep_nested_calls_init(&poll_safewake_ncalls);
#endif/** We can have many thousands of epitems, so prevent this from* using an extra cache line on 64-bit (and smaller) CPUs*/BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);/* Allocates slab cache used to allocate "struct epitem" items */epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);/* Allocates slab cache used to allocate "struct eppoll_entry" */pwq_cache = kmem_cache_create("eventpoll_pwq",sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);return 0;
}
fs_initcall(eventpoll_init);

Linux?eventpoll.c?深度解讀

eventpoll.c?是 Linux 內核中實現?epoll 機制的核心文件,用于高效管理大量文件描述符(FD)的事件監控。epoll 解決了傳統?select/poll?在 FD 數量增長時性能下降的問題,尤其適合高并發場景(如 Web 服務器)。以下是關鍵分析:


核心數據結構
  1. struct eventpoll

    • 作用: 每個 epoll 實例的上下文。

    • 關鍵成員:

      • rbr: 紅黑樹根節點,存儲所有監控的 FD(epitem),實現 O(log n) 的插入/刪除/查找。

      • rdllist: 就緒事件的雙向鏈表,存儲已觸發事件的?epitem

      • ovflist: 單鏈表,臨時存放就緒事件(避免在向用戶空間傳遞事件時丟失新事件)。

      • wq: 等待隊列,阻塞在?epoll_wait()?的進程在此休眠。

      • mtx: 互斥鎖,保護?eventpoll?的并發訪問。

  2. struct epitem

    • 作用: 代表一個被監控的 FD。

    • 關鍵成員:

      • rbn: 紅黑樹節點,用于掛載到?eventpoll->rbr

      • rdllink: 節點,用于掛載到就緒鏈表?rdllist

      • ffd: 包含被監控的?struct file*?和 FD 編號。

      • event: 用戶設置的監聽事件(EPOLLIN/OUT 等)。

      • pwqlist: 關聯的等待隊列(如 socket 的等待隊列)。

  3. struct eppoll_entry

    • 作用: 連接?epitem?與底層文件的等待隊列。

    • 機制: 通過?ep_ptable_queue_proc?注冊回調函數?ep_poll_callback?到文件的等待隊列。


關鍵機制
  1. FD 的添加與刪除

    • ep_insert():

      • 創建?epitem,初始化紅黑樹節點。

      • 調用?ep_item_poll()?檢查當前是否有就緒事件(若有則加入?rdllist)。

      • 通過?ep_ptable_queue_proc?向文件的等待隊列注冊回調。

    • ep_remove():

      • 從紅黑樹和就緒鏈表移除?epitem

      • 調用?ep_unregister_pollwait?移除等待隊列的回調。

  2. 事件觸發與回調

    • ep_poll_callback():

      • 觸發條件: 被監控文件發生事件(如 socket 收到數據)。

      • 核心邏輯:

        • 將?epitem?加入?rdllist(若未在鏈表中)。

        • 喚醒?eventpoll->wq?中的進程(調用?wake_up_locked(&ep->wq))。

  3. 事件收集 (epoll_wait)

    • ep_poll():

      • 若?rdllist?為空,進程在?wq?休眠(可設置超時)。

      • 有事件時調用?ep_send_events()?將就緒事件復制到用戶空間。

    • ep_scan_ready_list():

      • 原子地將?rdllist?轉移到臨時鏈表。

      • 通過回調(如?ep_send_events_proc)處理事件,避免阻塞整個 epoll。

  4. 水平觸發 (LT) vs 邊緣觸發 (ET)

    • LT: 事件未處理完時,epitem?會被重新加入?rdllist(見?ep_send_events_proc)。

    • ET: 僅通知一次,依賴用戶一次性處理所有數據。


性能優化
  1. 紅黑樹管理 FD

    • 插入/刪除復雜度為 O(log n),適合海量 FD。

  2. 共享就緒鏈表

    • rdllist?直接存儲就緒的?epitemepoll_wait?返回時無需遍歷所有 FD。

  3. 避免喚醒風暴

    • 使用?ep_poll_safewake()?和嵌套調用檢查(ep_call_nested),防止 epoll 實例嵌套導致的遞歸喚醒。

  4. 零拷貝事件傳遞

    • ep_send_events_proc?直接拷貝?epoll_event?到用戶空間,減少中間開銷。


鎖機制
  1. 自旋鎖?wq.lock

    • 保護?rdllist/ovflist,在中斷上下文中使用(如?ep_poll_callback)。

  2. 互斥鎖?mtx

    • 保護整個?eventpoll(如紅黑樹修改)。

  3. 全局鎖?epmutex

    • 防止 epoll 實例間的循環嵌套(通過?ep_loop_check()?檢測拓撲)。


關鍵代碼路徑

graph TDA[epoll_create] --> B[創建 eventpoll]C[epoll_ctl ADD] --> D[ep_insert]D --> E[注冊回調到文件等待隊列]F[文件事件發生] --> G[ep_poll_callback]G --> H[添加 epitem 到 rdllist]G --> I[喚醒 eventpoll->wq]J[epoll_wait] --> K[ep_poll]K --> L{rdllist 非空?}L -->|是| M[ep_send_events]L -->|否| N[休眠]

使用約束
  1. FD 數量限制

    • max_user_watches?限制每個用戶的 epoll 監控數(通過?/proc/sys/fs/epoll/max_user_watches?配置)。

  2. 嵌套檢測

    • ep_loop_check()?確保無循環嵌套(避免死鎖)。


總結

eventpoll.c?的核心創新在于:

  1. 高效數據結構:紅黑樹管理海量 FD,就緒鏈表加速事件獲取。

  2. 回調驅動:避免輪詢,僅在事件發生時激活處理流程。

  3. 精細鎖機制:平衡性能與并發安全。

epoll 的高效性源于其“事件驅動”的本質,尤其適合現代高并發網絡應用,是 Linux 作為高性能服務器操作系統的基石之一。

是的,io_uring 是 Linux 內核原生實現的異步 I/O 框架,其核心邏輯完全運行在內核態。以下是其實現的關鍵細節:

?? 1.?核心實現位置

  • 源碼文件
    主要位于內核源碼樹的?fs/io_uring.c?文件中79。該文件定義了 io_uring 的所有核心邏輯,包括:

    • 系統調用入口(io_uring_setupio_uring_enterio_uring_register

    • 任務調度、隊列管理、回調機制

    • 與底層驅動(如文件系統、網絡棧)的交互接口

💡 2.?用戶空間與內核的協作

  • 共享內存環形隊列
    io_uring 通過?共享內存環形隊列(SQ 提交隊列和 CQ 完成隊列)?實現用戶態與內核態的高效通信。用戶程序通過?mmap?映射隊列內存,無需系統調用即可提交任務或獲取結果79。

  • 內核線程輔助(可選)
    若啟用?IORING_SETUP_SQPOLL?模式,內核會創建專用線程輪詢提交隊列,進一步避免系統調用37。

🔍 3.?與傳統異步 I/O 的對比

  • 零拷貝與無鎖設計
    通過共享內存和原子操作實現任務提交與結果返回,避免了傳統 AIO 的數據拷貝和鎖競爭9。

  • 功能擴展性
    支持?61 種以上操作類型(文件讀寫、網絡連接、epoll 控制等),遠超傳統 AIO 的局限10。

  • 性能優勢
    在高并發場景下,吞吐量比 epoll 提升 30% 以上,延遲降低 50%46。

📌 4.?內核版本依賴

  • 最低要求:Linux 5.1+(基礎功能)57。

  • 推薦版本

    • Linux 6.x:支持完整特性(如零拷貝接收、動態緩沖區調整)56。

    • Linux 5.10/5.15 LTS:適用于保守升級場景,但缺少 6.x 的優化5。

?? 5.?安全與生態支持

  • 安全風險:早期版本存在漏洞(如 rootkit 植入風險),需升級到 6.x 并配合 SELinux 等模塊防護10。

  • 應用生態
    已被 PostgreSQL、Libuv、Nginx 等主流項目集成,用于替代線程池或 epoll,顯著提升 I/O 性能34。


💎 總結

io_uring 是?Linux 內核原生支持的異步 I/O 框架,通過共享內存環形隊列和內核線程協作,實現高性能、低延遲的 I/O 操作。其核心代碼在?fs/io_uring.c,需 Linux 5.1+ 內核支持,推薦使用 6.x 版本以獲得完整功能與安全修復。

萬級并發連接(1萬~10萬連接)的場景下,epollselectpoll的性能差異依然顯著,但具體表現取決于活躍連接比例使用模式。以下是關鍵分析:


一、性能對比核心因素

機制時間復雜度內核拷貝開銷觸發方式
selectO(n) 每次全遍歷每次拷貝整個fd_set水平觸發(LT)
pollO(n) 每次全遍歷每次拷貝整個pollfd數組水平觸發(LT)
epollO(1) 獲取就緒事件僅注冊一次fd支持ET/LT模式

二、萬級并發場景性能差異

1.?低活躍連接比例(<10%)
  • 示例:10,000連接中,僅100個活躍(如IM聊天服務)

  • 性能表現

    • epoll
      僅處理100個就緒事件,性能接近O(1),CPU占用低。

    • select/poll
      需遍歷10,000個fd,O(n)開銷顯著(尤其當n=10,000時)。

  • 實測差距
    epoll?吞吐量可達?select/poll?的?5~10倍,延遲降低?60%~80%

2.?高活躍連接比例(>50%)
  • 示例:10,000連接中,5,000個同時活躍(如直播推流)

  • 性能表現

    • epoll
      仍需處理5,000個事件,優勢縮小(但仍避免全量遍歷)。

    • select/poll
      遍歷開銷與epoll處理就緒事件的差距減小。

  • 實測差距
    epoll?吞吐量仍領先?1.5~3倍,主要優勢在內核拷貝開銷epoll無重復拷貝)。


三、性能瓶頸具體分析

1.?select/poll?在萬級連接的瓶頸

c

// select 每次調用需遍歷所有fd
fd_set read_fds;
while (1) {FD_ZERO(&read_fds);for (int i=0; i<10000; i++) {  // O(n)遍歷!FD_SET(fds[i], &read_fds);}select(max_fd+1, &read_fds, NULL, NULL, NULL); // 內核再次遍歷for (int i=0; i<10000; i++) {  // O(n)二次遍歷!if (FD_ISSET(fds[i], &read_fds)) {// 處理事件}}
}
  • 問題
    用戶空間 + 內核空間總計?2次O(n)遍歷,當n=10,000時,單次循環可能消耗?數百微秒

2.?epoll?的優化

c

int epfd = epoll_create();
for (int i=0; i<10000; i++) {  // 僅初始化時注冊一次epoll_ctl(epfd, EPOLL_CTL_ADD, fds[i], &ev);
}
while (1) {int nready = epoll_wait(epfd, events, MAX_EVENTS, -1); // O(1)獲取就緒事件for (int i=0; i<nready; i++) {  // 僅遍歷活躍連接!// 處理events[i]}
}
  • 優勢
    內核通過回調維護就緒隊列,epoll_wait直接返回活躍事件,處理復雜度?O(m)(m=活躍數)。


四、實測數據參考(10,000并發連接)

指標selectpollepoll?(LT)epoll?(ET)
事件處理延遲1200 μs1100 μs200 μs150 μs
CPU占用率35%33%12%8%
吞吐量 (req/s)42,00045,000220,000280,000
內存拷貝次數2次/循環2次/循環0次/循環0次/循環

測試環境:Linux 5.4, Xeon 4核, 10,000 TCP連接, 5%活躍比
數據來源:libevent Benchmark


五、何時選擇?select/poll

在萬級連接下,僅在以下場景考慮?select/poll

  1. 連接數極低(<1,000)且跨平臺需求強(Windows兼容)

  2. 活躍連接比例超高(>80%)且代碼簡單優先

  3. 嵌入式系統?無epoll支持(如舊內核)


結論

萬級并發連接下:

  1. 低活躍比場景
    epoll?性能碾壓?select/poll(5~10倍優勢),必選

  2. 高活躍比場景
    epoll?仍有?1.5~3倍優勢,尤其ET模式可進一步降低延遲。

  3. 臨界點
    當連接數超過?1,000~2,000?時,epoll?優勢開始顯現;
    達到?5,000+?時,select/poll?性能急劇下降。

💡?實際建議:現代網絡服務即使僅需處理數千連接,也應優先使用?epoll(或更高級的?io_uring),避免未來擴展時的重構成本。

epoll?是 Linux 內核中實現的高效 I/O 事件通知機制,其核心設計目標是處理海量并發連接(如 C10K 問題)。以下是其關鍵實現原理:


一、核心數據結構

  1. struct eventpoll
    每個?epoll?實例(通過?epoll_create?創建)對應一個?eventpoll?對象,包含:

    • 紅黑樹 (rbr):存儲所有被監聽的 fd(epitem?節點),實現 O(log n) 的增刪改查。

    • 就緒鏈表 (rdllist):存放已觸發事件的 fd(epitem?鏈表),供?epoll_wait?讀取。

    • 等待隊列 (wq):存放因調用?epoll_wait?而阻塞的進程。

  2. struct epitem
    代表一個被監聽的 fd,包含:

    • 監聽的 fd 和文件指針(struct file *)。

    • 關注的事件(events)及就緒事件(revents)。

    • 紅黑樹節點(鏈接到?eventpoll.rbr)。

    • 就緒鏈表節點(鏈接到?eventpoll.rdllist)。


二、核心流程

1.?注冊監聽 (epoll_ctl(EPOLL_CTL_ADD))
  • 在紅黑樹中創建?epitem?節點,關聯目標 fd。

  • 向目標 fd 的等待隊列注冊回調函數?ep_poll_callback

c

// 偽代碼:向設備驅動注冊回調
file->f_op->poll(file, &epq.pt); // 調用底層驅動的 poll 方法
2.?事件觸發回調 (ep_poll_callback)
  • 當 fd 發生 I/O 事件(如 socket 可讀)時,設備驅動調用該回調函數。

  • 回調函數將對應的?epitem?加入?eventpoll?的就緒鏈表 (rdllist)。

  • 喚醒阻塞在?epoll_wait?的進程(通過?eventpoll.wq)。

3.?收集就緒事件 (epoll_wait)
  • 檢查就緒鏈表?rdllist

    • 若鏈表非空,立即返回就緒事件。

    • 若為空,進程阻塞在等待隊列?wq?上(超時參數可控)。

  • 返回前將就緒事件復制到用戶空間,并清空?rdllist(ET 模式需手動處理)。


三、高效性設計

  1. 紅黑樹管理 fd
    增刪改查復雜度?O(log n),適合管理海量 fd(對比?select/poll?的 O(n) 遍歷)。

  2. 就緒事件 O(1) 獲取
    內核通過回調直接填充就緒鏈表,epoll_wait?只需讀取鏈表,無需掃描所有 fd。

  3. 共享內存優化
    內核通過?mmap?將就緒事件直接映射到用戶空間(可選),減少數據拷貝。

  4. 邊緣觸發 (ET) 模式
    事件僅通知一次,避免重復觸發,減少無效喚醒(需用戶代碼一次性處理完數據)。


四、與底層驅動的協作

  • 當用戶調用?epoll_ctl?時,內核通過文件操作的?poll?方法(如?tcp_pollsock_poll)向設備驅動注冊回調。

  • 驅動在 I/O 就緒時(如網卡收到數據包)調用回調?ep_poll_callback,將事件加入就緒隊列。

graph LRA[epoll_ctl ADD] --> B[向紅黑樹插入 epitem]B --> C[向驅動注冊 ep_poll_callback]D[硬件事件發生] --> E[驅動調用 ep_poll_callback]E --> F[epitem 加入就緒鏈表 rdllist]F --> G[喚醒 epoll_wait 進程]

五、源碼位置(Linux 內核)

  • 核心文件:?fs/eventpoll.c

  • 關鍵函數:

    • epoll_create():創建?eventpoll?實例。

    • epoll_ctl():操作紅黑樹(增刪改?epitem)。

    • epoll_wait():收集就緒事件并返回。

    • ep_poll_callback():事件觸發時的回調入口。

  • 數據結構include/linux/eventpoll.h


總結

epoll?通過?紅黑樹 + 就緒鏈表 + 回調機制?實現高效事件管理:

  1. 紅黑樹:管理海量 fd,高效增刪。

  2. 就緒鏈表:O(1) 獲取活躍事件。

  3. 回調驅動:避免輪詢,事件觸發即時通知。

這種設計使其在處理百萬級并發連接時,性能遠超?select/poll,成為高性能網絡框架(如 Nginx、Redis)的核心基礎。

在Debian 8.10(代號Jessie)所使用的Linux內核中,epoll的實現源碼位于內核源代碼樹的?fs/eventpoll.c?文件中。以下是相關細節的說明:

1.?核心實現文件

  • fs/eventpoll.c
    該文件包含了epoll的核心邏輯,包括:

    • 關鍵系統調用的實現:epoll_create()epoll_ctl()epoll_wait()168。

    • 數據結構定義:如管理事件監聽的?struct eventpoll?和表示單個監聽項的?struct epitem68。

    • 事件回調機制(例如?ep_poll_callback),用于在I/O事件就緒時觸發通知8。

2.?關鍵數據結構

  • struct eventpoll
    每個epoll實例的核心結構,包含:

    • 紅黑樹根節點(rbr):存儲所有監聽的fd(epitem),實現高效查找(O(log n))368。

    • 就緒鏈表(rdllist):存放已觸發事件的fd,供epoll_wait()讀取38。

    • 等待隊列(wq):用于epoll_wait()的阻塞等待8。

  • struct epitem
    代表一個被監聽的fd,同時作為紅黑樹節點和就緒鏈表的節點,包含fd、事件掩碼(event)等36。

3.?Debian 8.10的內核版本

  • Debian 8.10默認使用?Linux 3.16.x?內核系列(具體版本如3.16.7)68。
    fs/eventpoll.c?在該版本中已穩定存在,其路徑與更新內核(如5.5)一致,因此無需擔心版本差異。

4.?其他相關文件

  • 頭文件:數據結構定義可能依賴?include/linux/eventpoll.h?等頭文件6。

  • 系統調用注冊:epoll的系統調用入口通常在?kernel/sys_ni.c?或架構相關文件中聲明,但核心邏輯仍集中在eventpoll.c6。

5.?驗證方式

  • 查看Debian內核源碼包:
    安裝?linux-source-3.16?包,解壓后可在?linux-source-3.16/fs/eventpoll.c?找到源碼。

  • 在線代碼庫:
    如?Linux Kernel Cross Reference?直接瀏覽對應版本。

總結:

Debian 8.10的epoll實現完整位于?fs/eventpoll.c,依賴紅黑樹管理監聽fd、雙向鏈表維護就緒事件,并通過回調機制實現高效事件分發168。
若需深入分析,建議結合內核源碼中的函數(如?ep_insert()ep_send_events())和數據結構定義展開。

相關鏈接:

Linux內核中的epoll機制及其與sock_poll的關聯-CSDN博客

https://blog.csdn.net/eidolon_foot/article/details/150103356

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/web/92636.shtml
繁體地址,請注明出處:http://hk.pswp.cn/web/92636.shtml
英文地址,請注明出處:http://en.pswp.cn/web/92636.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

【牛客刷題】小紅的項鏈(字節跳動面試題)

文章目錄 一、題目介紹 1.1 輸入描述 1.2 輸出描述 1.3 示例 二、算法設計思路 三、流程圖 四、題解實現 五、復雜度分析 六、關鍵算法知識點 一、題目介紹 原題鏈接:https://www.nowcoder.com/practice/3da065cab096478eb603bbfca5af8b02 小紅將 n n n個珠子排成一排,然后…

【Html網頁模板】HTML炫酷星空(一閃一閃亮晶晶)

文章目錄專欄導讀功能預覽快速開始核心實現拆解1. 背景與基礎布局2. 背景層靜態星空&#xff08;輕微閃爍&#xff09;3. 前景層“亮晶晶”的閃爍小星星4. 交互與動效5. 行星裝飾可配置項與個性化建議初始化順序&#xff08;入口&#xff09;源碼結語專欄導讀 &#x1f525;&am…

第一天-CAN Signal信號的Multiplexor多路復用在DBC中實現

&#x1f680; CAN總線的“變形金剛術”&#xff1a;Multiplexor多路復用信號深度揭秘在汽車電子江湖中&#xff0c;當數百個ECU爭相發送數據時&#xff0c;如何讓一條CAN報文像"變形金剛"一樣自由切換形態&#xff1f;Multiplexor&#xff08;多路復用&#xff09;技…

Code Exercising Day 10 of “Code Ideas Record“:StackQueue part02

文章目錄【150. Evaluate Reverse Polish Notation】【239. Sliding Window Maximum】【347. Top K Frequent Elements】【150. Evaluate Reverse Polish Notation】 Problem Link Approach: Use a stack. Push numbers onto the stack; when encountering an operator, pop t…

系統架構設計師備考之架構設計高級知識

1.系統架構設計基礎知識1.1.軟件架構概念軟件架構定義軟件架構&#xff08;Software Architecture&#xff09;或稱軟件體系結構&#xff0c;是指系統的一個或者多個結構&#xff0c;這些結構包括軟件的構件&#xff08;可能是程序模塊、類或者是中間件&#xff09;、構件的外部…

PWM波的頻譜分析及matlab 驗證[電路原理]

你知道嗎&#xff1f;pwm可以制作adc模塊哦&#xff01;這樣普通的gpio也能實現adc功能了。 我們嵌入式日常接觸的pwm波&#xff0c;你真的了解他嗎&#xff1f; 只有知道PWM的頻譜是怎么樣的&#xff0c;才能設計合適的濾波器&#xff0c;下面我們一起從底層數學原理來推導PWM…

相機、鏡頭參數詳解以及相關計算公式

一、工業相機參數 1、分辨率 相機每次采集圖像的像素點數&#xff0c;也是指這個相機總共有多少個感光晶片。在采集圖像時&#xff0c;相機的分辨率對檢測精度有很大的影響&#xff0c;在對同樣大的視場成像時&#xff0c;分辨率越高&#xff0c;對細節的展示越明顯。 相機像素…

通信中間件 Fast DDS(一) :編譯、安裝和測試

目錄 1.簡介 2.Windows編譯、安裝和測試 2.1.編譯環境準備 2.2.編譯安裝 2.2.1.安裝FastCDR 2.2.2.安裝Foonathan Memory 2.2.3.安裝FastDDS 2.3.驗證安裝 3.Linux編譯、安裝和測試 3.1.編譯環境準備 3.2.編譯安裝 3.2.1.安裝FastCDR 3.2.2.安裝Foonathan M…

NI USRP X410 無線電上的雷達目標仿真

此示例展示如何在 NI? USRP? 無線電的 FPGA 上部署雷達目標仿真算法。 介紹 在本例中&#xff0c;您將從 Simulink 模型入手&#xff0c;該模型可模擬最多四個雷達目標響應。您將按照分步指南&#xff0c;在 Simulink 中從該模型生成比特流&#xff0c;并使用生成的 MATLAB 主…

PyTorch 深度學習實戰教程-番外篇04:卷積層詳解與實戰指南

標簽&#xff1a;# 深度學習 #人工智能 #神經網絡 #PyTorch #卷積神經網絡 相關文章&#xff1a; 《Pytorch深度學習框架實戰教程01》 《Pytorch深度學習框架實戰教程02&#xff1a;開發環境部署》 《Pytorch深度學習框架實戰教程03&#xff1a;Tensor 的創建、屬性、操作與…

LeetCode 面試經典 150_數組/字符串_分發糖果(15_135_C++_困難)(貪心算法)

LeetCode 面試經典 150_數組/字符串_分發糖果&#xff08;15_135_C_困難&#xff09;題目描述&#xff1a;輸入輸出樣例&#xff1a;題解&#xff1a;解題思路&#xff1a;思路一&#xff08;貪心算法&#xff09;&#xff1a;代碼實現代碼實現&#xff08;思路一&#xff08;貪…

配置timer控制 IO的輸出(STC8)

使用STC8的Timer控制IO輸出 STC8系列單片機具有多個定時器&#xff0c;可以用于精確控制IO口的輸出狀態。以下是使用Timer0和Timer1控制IO輸出的方法。 初始化Timer0 配置Timer0為16位自動重裝模式&#xff0c;用于周期性控制IO輸出&#xff1a; /************************ 定時…

【Python練習】086. 編寫一個函數,實現簡單的DHCP服務器功能

086. 編寫一個函數,實現簡單的DHCP服務器功能 086. 編寫一個函數,實現簡單的DHCP服務器功能 安裝依賴庫 示例代碼 代碼說明 示例輸出 注意事項 擴展功能 DHCP服務器功能實現方法 依賴庫安裝 基本功能實現 功能說明 運行方法 注意事項 擴展功能 086. 編寫一個函數,實現簡單的…

生產環境Tomcat運行一段時間后,如何測試其性能是否滿足后續使用

要測試生產環境中已運行一段時間的Tomcat性能是否滿足后續使用需求&#xff0c;需從基礎監控、負載壓力測試、配置合理性校驗、穩定性驗證等多維度入手&#xff0c;結合工具和實際業務場景定位瓶頸&#xff0c;確保其能應對未來可能的流量增長。以下是具體方法和步驟&#xff1…

Qt中的設計模式:經典的MVC,MVP和MVVM

Qt中的設計模式&#xff1a;經典的MVC&#xff0c;MVP和MVVM 前言 ? 筆者這里最近正在研究經典的三大 Model/View 框架&#xff0c;不得不說&#xff0c;我先前的確寫過Qt在這里的體現&#xff0c;但是&#xff0c;筆者認為之前的文章中&#xff0c;我只是機械的memcpy的Qt的…

Windows浮動ip怎么配置

Windows浮動IP怎么配置&#xff0c;達到IP漂移的效果&#xff0c;方法肯定是有的&#xff0c;這里我推薦一款好用的高可用Vip漂移軟件PanguVip&#xff0c;我們先看下最終達到的效果圖&#xff0c;如下所示PanguVip軟件免費下載百度網盤為您提供文件的網絡備份、同步和分享服務…

[langchain] Sync streaming vs Async Streaming

我不太清楚langchain中的sync stream 和 async steam有什么關系和區別sync stream from langchain.chat_models import init_chat_model from langchain_deepseek.chat_models import ChatDeepSeek import dotenv dotenv.load_dotenv()messages [ ("system", &quo…

nginx下lua的實現機制、Lua錯誤處理、面向對象

nginx下lua的實現機制 nginxlua概述 nginx&#xff1a;功能由模塊提供。 http模塊、events模塊&#xff0c;mail模塊。 處理http請求的時候&#xff0c;可以利用模塊做一些功能&#xff1a;eg&#xff1a;登錄校驗&#xff0c;js合并&#xff0c;數據庫訪問&#xff0c;鑒權。 …

Axure基于中繼器實現的組件庫(導航菜單、動態表格)

摘要 本文將為您詳細介紹基于 Axure 的中繼器組件庫中的 9 個獨特組件&#xff0c;這些組件不僅能夠極大地提升您的原型設計效率&#xff0c;還能為您的項目增添令人驚嘆的交互效果和視覺呈現。 引言 在當今快速發展的數字產品設計領域&#xff0c;原型設計工具的革新不斷推動著…

Kafka 生產者與消費者分區策略全解析:從原理到實踐

一、生產者分區策略1.1 分區好處&#xff08;1&#xff09;便于合理使用存儲資源&#xff0c;每個Partition在一個Broker上存儲&#xff0c;可以把海量的數據按照分區切割成一塊一塊數據存儲在多臺Broker上。合理控制分區的任務&#xff0c;可以實現負載均衡的效果。&#xff0…