【專題】機器學習期末復習資料

機器學習期末復習資料(題庫)
鏈接:https://blog.csdn.net/Pqf18064375973/article/details/148105494?sharetype=blogdetail&sharerId=148105494&sharerefer=PC&sharesource=Pqf18064375973&sharefrom=mp_from_link

【測試】

  • Artificial intelligence is a broad area of computer science and is defined where in —— have the ability to learn and think as a human would.()
    A.machines
    B.humans
    C.mobiles
    D.telivision

  • A —— algorithm enables it to identify pattens in observed data, build models that explain the world, and predict things without having explicit pre-programmed rules and models.()
    A.Artifcial Intelligence
    B.Machine Learning
    C.Deep Learning
    D.None of the Above

  • Using past purchase behavior data, —— can help to discover data trends that can be used to develop more effective cross-selling strategies. ()
    A.Unsupervised learning
    B.Supervised learning
    0C.Reinforcement Learning
    D.Classifcation Model

  • Find the correct statement :

    Statement A: Duplicate or missing values may give an incorrect view of the overall statistics of data

    Statement B: Outliers and inconsistent data points often tend to disturb the model’s overallearning, leading to false predictions

    A.Only Statement A is true
    B.0nly Staterent B is true
    C.Both Statement A and Statement B are true
    D.Both Statement A and Statement B are false

  • ldentify the correct code to import a dataset name 'nba.csv?()
    A.df= pd.read-csv("CSV_Data/nba.csv)
    B.df = pd.read.csv(“0SV Data/nba.cav”)
    C.df= pd.read_csv(csv_Datanba.csv")
    D.df= pd.readcsv(“CSV_Datanba.cav”

  • Which of the folowing refers to the process of removing unwanted varables and vales from your dataset and geting rid of any irregularties in it?
    A.Data Cleaning
    B.Univariate Analysis
    C.Bivariate Analyais
    D.None of the Above

  • Identify the code where you want to replace null values with mean from the same column from where you get the mean. ()
    A.df[salary].replace(np.NaN, df[salary].mean().head(10)
    B.dfTSalary|.mean(np.NaN, dfSalary].replace().head(10)
    C.dfSalary].replacenull(np.NaN, df’Salary].mean()).head(10)
    D.df[Salary].replace_null(np.NaN, df[Salary].mean().head(10)

  • —— is the process of gathering, sorting, and transforming data from an original “raw” format, in order to prepare it for analysis and otheldownstream processes.()
    A.Data Acquisition
    B.Exploratory Data Analyais
    C.Data Wrangling
    D.Data Manipulation

  • —— is defined as a process that enables users in data organization in order to make reading or interpret the insights from the data and comprises of havingbetter design.()
    A.Data Acquisition
    B.Exploratory Data Analyais
    c.Date Wrangling
    D.Data Manipulation

  • Find the correct statement :

    Statement A: The value of an independent variable does not change based on the effects of other variables.

    Statement B: The vale of dependent variable changes when there is any change in the values of the independent variables, as mentioned before
    A.Only Statement A is true
    B.0nly Staterent B is true
    C.Both Statement A and Statement B are true
    D.Both Staterent A and Statement B are false

  • When a model has not leamed the patterns in the training data well and is unable to generalize wel on the new data, it is known as ——
    A.Beat Fit
    B.Data Fitting
    C.Under fittting
    D.Over fitting

  • Dimensionality reduction refers to technigues that reduce the number of input —— in a dataset.
    A.variables
    B.columns
    C.rows
    D.dataset

  • Which of the following is considered as Basic Assumptions for Factor Analysis? ()
    A.There are no outliers in data.
    B.Sample aize should be greater than the factor.
    C.There should not be perfect multicollinearity
    D.All of the Abowe

  • Which of the followings is used for standardize features by removing the mean and scaling to unit variance?(
    A.Bartlett’s Test
    B.StandardScaler()
    C.Kaiser-Meyer-0lkin (KMO) Test
    D.Commonalities

  • Which of the following function is used to find the amount of variance explained by each factors?()
    A.standardscaler
    B.Commonalities
    C.loading_
    D.get_factor_variance()

  • Which of the followings is/are used to express the correlation between any two or more attributes in a multidimensional dataset? ()
    A.Standardization
    B.Covariance Matrix
    C.Eigen Vectors and Eigen Values
    D.Feature Vectors

  • Which of the following is a supenvised machine learing technique used to find a linear combination of features that separates two or more classes of objects or events?()
    A.Factor Analysis (FA)
    B.Principal Component Analysis (PCA)
    C.Linear Discriminant Analysis(LDA)
    D.All of the Abowe

  • Find the correct statement .

    Statement A: linear discriminant analysis is a supervised dimensionality reduction technigue that also achieves classification of the data simultaneouslyr

    Statement B. Principal component analysis is an unsupervised dimensionality reduction technique, it ignores the class label.
    A.Only Statement A is true
    B.Only Statement B is true
    C.Both Statement A and Stetement B are true
    D.Both Statement A and Statement B are false

  • Which of the followings is not a classification algorithm? ()
    A.Decision Tree
    B.Random Forest
    C.Naive Bayes
    D.Logistic regression

  • Which among these is not an disadvantage of using decision tree algorithm for classification?()
    A.Overfitting
    B.High Variance
    C.Low Biased Tree
    D.Little data preparation

  • Which of the following in a decision tree carries the final results and cannot be split any further?
    A.Root Node
    B.Decision Node
    C.Leaf Node
    D.Split Node

  • Find the correct statement :

    Statement A: Random Forest is a learning method that operates by constructing multiple decision trees.

    Statement B: The final decision is made based on the majority of the trees and is chosen by the random forest.
    A.Only Statement A is true
    B.0nly Statement B ia true
    C.Both Statement A and Statement B are true
    D.Both Statement A and Statement B are false

  • According to Bayes theorem:
    image-20250521090715626
    what does P(AlB) denotes? ()
    A.Conditional Probability of A given B
    B.Conditional Probability of B given A
    C.Probability of Event A
    D.Probability of Event B

  • Identify the correct steps for the below statement: A Machine Learning system learns from historical data then it- ()

    【C】

    A.	1. receives new data2.builde the prediction models3.predicts the output for it
    B.	1.builds the prediction models2.predicts the output for it3.receives new data
    C.	1.builds the prediction medels2 receives new data3.predicts the output for it
    D.	None of the Above
    
  • Identify the correct supervised learning algorithms fro the below statement.
    In this you divide your customers based on common characteristics - such as demographics or behaviors, so you can marketto those customers more effectivey
    A.Predicting housing prices
    B.Text categorization
    C.Face Detection
    D.Customer Segmentation

  • —— is a data analytics process to understand the data in depth and learn the different data characteristics, often with visual means.
    A.Data Acquisition
    B.Exploratory Data Analyais
    C.Data Wrangling
    D.Data Manipulation

  • You need to check to see the number of missing values in each column and the percentage of missing values they contribute to the dataset.ldenify the corect codeto achieve that. ()

    【B】

    A.	total=df.isnull(.sum(.sort values(ascending=False)missing_data=pd.concat(total,percentlaxia=1 Jkeya= Total Percent])
    B.	total=dfianull0.sum(.sort_values(ascending=False)percent=(dfisnull0.sum/df.isnull(.count().sort_values(ascending=False)missing_data=pd.concat([total,percentlaxis=1,keys=[Total,Percent])
    C.	total=dfisnull(.sum(.sort_valuea(ascending=Falsepercent=(dfisnull().concat(/df.inull(.count()).sort_values(ascending=False)missing_data=pd.sum(ftotal,percent,axis=1.keys= Total',Percent)
    D.	total=df.isnull().sort values(ascending=False)percent=(df.isnull().concat(/df.isnull().count().sort_values(ascending=False)missing_catasoc sumdtote cercent exis=1cevs=[Tote !Pencent]
    
  • Identify the correct code where a column has missing value and you want to replace it with a new category.
    A.df[College].fll(u).head(10)
    B.dfCollege].fll_na(u).head(10)
    C.df[college].fillna(u).head(10)
    D.dfCollege].filnull(u).head(10)

  • How can we access the data values fited in the particular row or column based on the index value passed to the function? ()
    A.Using loc() function
    B.using flter() function
    C.using groupby0 function
    D.None of the Above

  • Find the correct statement :

    Statement A. Classification Suervised Learnino is used when the outout variable is a real or continuous value

    Statement B: Regression is used when the output variable iscategorical.
    A.Only Statement A is true
    B.0nly Statement B is true
    C.Both Statement A and Statement B are true
    D.Both Statement A and Statement B are false

  • In the equation, y = m * x + c, what is denoted as slope of the line. ()

    A.y

    B.m

    C.x

    D.c

  • Which of the folowing is refers to techmiaues that are used to calibrate machine eaming models in order to minimizethe adiusted oss function and prevent overfitting or underftting? ()
    A.Regularization
    B.Logiatic regression
    C.Confusion iatrix
    D.Root Mean Squared Error

  • Which of the following does not consider as an advantage of Dimentionality reduction?
    A.Fewer features mean less complexity
    B.You will need less storage space because you have fewer data
    C.Many features reguire less computation tirne
    D.Model accuracy improves due to less misleading data

  • A —— is a latent variable which describes the association among the number of observed variables.
    A.Factor
    B.Factor loading
    C.Eigenvalues
    D.Communalities

  • While using the loading function the loading score range will be betweeen()
    A1.0
    B.-1.0
    C…1.1
    D.0.-1

  • Which straight line is used to captures most of the variance of the data and they have a direction and magnitude?
    A.Principal Components
    B.Build Covariance Matrix
    C.Eigen Vectors and Eigen Walues
    D.Feature Vectora

  • Which of the folowings is/are the mathematical values that are extracted from the covariance table and they are responsible for the generation of new set of variables from old set of variables which further lead to the construction of principal component?
    AStandardization
    B.Covariance Matrix
    C.Eigen Vectors and Eigen Values
    D.Feature Vectors

  • Which of the following is a limitations of Logistic Regression? ()
    A.Two-Class Problems
    B.Unatable with Well Separated Classes
    C.Unstable with Few Examples
    D.All of the Above

  • Find the correct statement :

    Statement A: Principal component analysis focuses on finding a feature subspace that maximizes the separatability between the groups

    Statement B: Linear discriminant analysis focuses on capturing the direction of maximum variation in the data set.
    A.Only Statement A is true
    B.Only Statement B is true
    C.Both Statement A and Statement B are true
    D.Both Statement A and Statement B are false

  • Classification algorithms are used to classify the data into
    A.group
    B.groups and categories
    C.categoriea
    D.dataset


【課后題】

  • Which among these do not belong to artificial intelligence?

    a. natural language processing

    b. autonomous vehicles

    c. accounting

    d. image recognition

  • —— concept pertains to a machine being more intelligent than a human being.

    a. Artificial Narrow Intelligence

    b. Artificial General Intelligence

    c. Artificial Super Intelligence

    d. None of the Above

  • A _____________ algorithm enables it to identify patterns in observed data, build models that explain the world, and predict things without having explicit pre-programmed rules and models.

    a. Artificial Intelligence

    b. Machine Learning

    c. Deep Learning

    d. None of the Above

  • Which of the following algorithm are used for visual perception tasks, such as object recognition?

    a. Supervised Machine Learning algorithms.

    b. Unsupervised Machine Learning algorithms.

    c. Reinforcement Learning

    d. Classification Model

  • —— is a real-time machine learning application that determines the emotion or opinion of the speaker or the writer.

    a. Product Recommendations

    b. Image recognition

    c. Sentiment Analysis

    d. Language Translation

  • Which of the followings is a stage in data preprocessing?

    a. Exploratory Data Analysis

    b. Data Wrangling

    c. Data Manipulation

    d. All of the Above

  • Which of the following libraries is a Python 2D plotting library that is used to plot any type of charts in Python?.

    a. Numpy

    b. Pandas

    c. Matplotlib

    d. Seaborn

  • Identify the correction option for df.shape command?

    a. It will return the number of columns

    b. It will return the number of rows

    c. It will return the number of column and row

    d. It will return the datatype of column

  • —— is defined as a process that enables users in data organization in order to make reading or interpret the insights from the data and comprises of having better design

    a. Exploratory Data Analysis

    b. Data Wrangling

    c. Data Acquisition

    d. Data Manipulation

  • Which of the following is not a supervised learning algorithm?

    a. k-means clustering

    b. Linear Regression

    c. Logistic Regression

    d. Support Vector Machine

  • —— is used when the output variable is a real or continuous value. In this case, there is a relationship between two or more variables i.e., a change in one variable is associated with a change in the other variable.

    a. Regression

    b. Classification

    c. k-means clustering

    d. Support Vector Machine

  • modifies the over-fitted or under fitted models by adding the penalty equivalent to the sum of the squares of the magnitude of coefficients.

    a. R-squared

    b. Adjusted R-sqaured

    c. Ridge Regularization

    d. Lasso Regularization

  • Find the correct statement:

    Statement A: The value of an independent variable does not change based on the effects of other variables.

    Statement B: The value of dependent variable changes when there is any change in the values of the independent variables, as mentioned before.

    a. Only Statement A is true

    b. Only Statement B is true

    c. Both Statement A and Statement B are true

    d. Both Statement A and Statement B are false

  • The process of plotting a series of data points and drawing the best fit line to understand the relationship between the variables is called ____________.

    a. Underfitting

    b. Overfitting

    c. Data Fitting

    d. None of the Above

  • Which of the following is Dimentionality Reduction Techniques?

    a. Factor Analysis (FA)

    b. Principal Component Analysis (PCA)

    c. Linear Discriminant Analysis (LDA)

    d. All of the above

  • —— are the sum of the squared loadings for each variable and it represents the common variance.

    a. Factor

    b. Factor loading

    c. Eigenvalues

    d. Communalities

  • —— use factor analysis to identify price-sensitive customers, identify brand features that influence consumer choice, and helps in understanding channel selection criteria for the distribution channel.

    a. Advertisers

    b. Market researchers

    c. Psychologist

    d. None of the Above

  • Values close to —— indicate that the factor have influence on these variables.

    a. 0 or -1

    b. -1 or 1

    c. 0 or 1

    d. -1 or 0

  • Which of the followings is/are used to express the correlation between any two or more attributes in a multidimensional dataset?

    a. Standardization

    b. Build Covariance Matrix

    c. Eigen Vectors and Eigen Values

    d. Feature Vectors

  • Which of the followings is not a classification algorithm?

    a. Decision Tree

    b. Random Forest

    c. Naive Bayes

    d. Logistic regression

  • Which of the following is used to determine the correct variable for splitting nodes?

    a. Entropy

    b. Information Gain

    c. Gini Index

    d. Root Node

  • Which of the following is not an advantage of using random forest algorithm?

    a. No Overfitting

    b. High Accuracy

    c. Estimate Missing Data

    d. High Variance

  • Support Vectors are data points that are —— the hyperplane and influence the position and orientation of the hyperplane.

    a. closer to

    b. far from

    c. in between

    d. None of the Above

  • Which of the followings is a Kernel SVM Classifiers?

    a. Linear Kernel

    b. Polynomial Kernel

    c. RBF Kernel

    d. All of the Above

  • Which of the following is not a type of Clustering?

    a. Agglomerative

    b. Divisive

    c. K-Means

    d. Factor Analysis

  • Identify the formula of Squared Euclidean distance when we are deciding the closeness of two clusters(a, b)?

    a. ||a-b||2 = √(Σ(ai-bi))

    b. ||a-b||2 2 = Σ((ai-bi)2)

    c. ||a-b||1 = Σ|ai-bi|

    d. ||a-b||INFINITY = maxi|ai-bi|

  • Which of the following is used to measure the distance in an ordinary straight line?

    a. Euclidean Distance Measure

    b. Squared Euclidean Distance Measure

    c. Manhattan Distance Measure

    d. Cosine Distance Measure

  • —— is a certain sequence of data observations that a system collects within specific periods of time.

    a. Time Series

    b. Regularization

    c. Logistic regression

    d. Confusion Matrix

  • In time series the data has to be stationary. And Stationarity of Time series depends on —— , variance, and covariance.

    a. Mean

    b. Median

    c. Mode

    d. None of the Above

  • Which of the following models predict future behavior using past behavior where there is some correlation between past and future data?

    a. Auto Regressive (AR) Model

    b. Moving Average (MA)

    c. Auto Regressive Moving Average (ARMA)

    d. Auto Regressive Integrated Moving Average (ARIMA)

  • Which of the following includes the modeling of exogenous variables?

    a. ARMA

    b. ARIMA

    c. SARIMA

    d. SARIMAX

  • Which of the following is an example of Ensemble Learning?

    a. Regularization

    b. Logistic regression

    c. Confusion Matrix

    d. Random Forest

  • Which of the following is not a simple Ensemble Learning Method?

    a. Mode

    b. Mean/Average

    c. Weighted Average

    d. Boosting

  • Which of the following is not an advantage of Bagging in Machine Learning?

    a. Minimizes the overfitting of data.

    b. Improves the model’s accuracy.

    c. Deals with higher dimensional data efficiently

    d. Determines the worst, best, and expected values for several scenarios

  • Which of the following boosting techniques is also known as XGBoost?

    a. Adaptive boosting

    b. Gradient boosting

    c. Extreme Gradient Boosting

    d. None of the Above

  • Which of the following is not a Cross Validation model?

    a. K-fold

    b. K-means

    c. Leave One Out

    d. Stratified K-fold

  • Which of the following is not a type of recommendation systems?

    a) Content-Based Recommendation

    b) Collaborative Filtering

    c) Hybrid

    d) Rating-Based Recommendation

  • Find the correct statement:

    Statement A: Content-Based Recommendation recommends items based on similarity measures between users and/or items.

    Statement B: Each method has its strength. It would be best if we can combine all those strengths and provide a better recommendation. This idea leads us to another improvement of the recommendation, which is the hybrid method.

    a) Only Statement A is true

    b) Only Statement B is true

    c) Both Statement A and Statement B are true

    d) Both Statement A and Statement B are false

  • —— finds interesting associations and relationships among large sets of data items. This technique shows how frequently an itemset occurs in a transaction.

    a) Association rule mining

    b) Apriori Algorithm

    c) User-based nearest neighbor

    d) Item-based nearest neighbor

  • Which of the following is an implication expression of the form X -> Y, where X and Y are any 2 item sets?

    a) Support Count

    b) Frequent Item set

    c) Association Rule

    d) None of the Above

  • Which of the following is correct for text mining when automatic extraction of structured data such as entities, entities relationships, and attributes describing entities from an unstructured source?

    a) Information Extraction

    b) Natural Language Processing

    c) Data Mining

    d) Information Retrieval

  • What does NTLK stands for?

    a) Natural Language Toolkit

    b) Non-natural Language Toolkit

    c) Neutral Language Toolkit

    d) New Language Toolkit

  • Which of the following is more accurate as it uses more informed analysis to create groups of words with similar meanings based on the context?

    a) Removing Punctuations

    b) Removal of Frequent Words

    c) Stemming

    d) Lemmatization

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/web/80921.shtml
繁體地址,請注明出處:http://hk.pswp.cn/web/80921.shtml
英文地址,請注明出處:http://en.pswp.cn/web/80921.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

SpringCloud Alibaba微服務-- Sentinel的使用(筆記)

雪崩問題: 小問題引發大問題,小服務出現故障,處理不當,可能導致整個微服務宕機。 假如商品服務出故障,購物車調用該服務,則可能出現處理時間過長,如果一秒幾十個請求,那么處理時間過…

5:OpenCV—圖像亮度、對比度變換

1.更改圖像和視頻的亮度 更改亮度 更改圖像的亮度是常用的點操作。在此操作中,圖像中每個像素的值應增加/減少一個常數。要更改視頻的亮度,應對視頻中的每一幀執行相同的操作。 如果要增加圖像的亮度,則必須為圖像中的每個像素添加一些正常…

【工作流】Fastgpt配置豆包模型-火山引擎

V4.9.7 Fastgpt現在不通過oneapi 來配置模型和渠道了, 可以直接在頁面進行設置 首先在賬號- 模型提供商里面 填入豆包的信息: 渠道名隨便填,廠商選豆包, 然后選3個模型,如圖所示 如果沒有填入模型映射的話是沒辦法 …

2025年系統架構師---綜合知識卷

1.進程是一個具有獨立功能的程序關于某數據集合的一次運行活動,是系統進行資源分配和調度的基本單位(線程包含于進程之中,可并發,是系統進行運算調度的最小單位)。一個進程是通過其物理實體被感知的,進程的物理實體又稱為進程的靜態描述,通常由三部分組成,分別是程序、…

LangChain4j入門AI(六)整合提示詞(Prompt)

前言 提示詞(Prompt)是用戶輸入給AI模型的一段文字或指令,用于引導模型生成特定類型的內容。通過提示詞,用戶可以告訴AI“做什么”、 “如何做”以及“輸出格式”,從而在滿足需求的同時最大程度減少無關信息的生成。有…

如何使用 Docker Compose 部署 Immich

如何使用 Docker Compose 部署 Immich Immich 是一個開源的自建照片和視頻備份解決方案,通過 Docker 部署可以快速構建一個穩定的自主管理系統。本文將帶你一步步完成使用 Docker Compose 部署 Immich 的過程,幫助你在生產環境中實現高效的媒體管理。 1…

Mac遠程連接Windows電腦教程

在 Mac 上通過微軟官方遠程桌面工具(Windows App)連接局域網內的 Windows 電腦,需按照以下步驟操作: 一、準備工作 確認 Windows 版本支持遠程連接 Windows 專業版/企業版/教育版 支持遠程桌面功能。家庭版不支持,需使…

從0到1打造AI Copilot:用SpringBoot + ChatGPT API實現智能開發助手

本文將從0到1系統性地講解如何基于SpringBoot與OpenAI ChatGPT API打造一款智能開發助手(AI Copilot)。文章首先介紹AI Copilot的背景與價值,接著深入架構設計與環境準備,然后通過詳盡的代碼示例演示SpringBoot項目的搭建、依賴配…

Crawl4AI:高效的AI數據抓取工具

在大數據時代,抓取并處理大量數據是進行人工智能(AI)研究與開發的基礎。而網絡爬蟲是獲取網頁數據的重要工具。今天,我想介紹一個功能強大的爬蟲框架——Crawl4AI,它為數據抓取和機器學習任務提供了無縫的支持。Crawl4…

從單鏈表 list 中刪除第 i 個元素--Python

從單鏈表 list 中刪除第 i 個元素 一、問題引入二、解題步驟1.思維導圖2.解題步驟 三、代碼實現四、個人總結 一、問題引入 請編寫程序,將 n 個整數順次插入一個初始為空的單鏈表的表頭。隨后對任意給定的位序 i,刪除鏈表中第 i 個結點。注意&#xff1…

git學習與使用(遠程倉庫、分支、工作流)

文章目錄 前言簡介git的工作流程git的安裝配置git環境:git config --globalgit的基本使用新建目錄初始化倉庫(repository)添加到暫存區新增/修改/刪除 文件狀態會改變 提交到倉庫查看提交(commit)的歷史記錄git其他命令…

九、日志分析和系統故障排查

目錄 1、日志分析1.1、日志介紹1.1.1、日志的功能1.1.2、日志文件的分類1.1.3、日志保存位置1.2、rsyslog服務1.2.1、發送日志到遠程日志服務器1.3、查看日志文件1.3.1、/var/log/messages文件的內容示例1.3.2、用戶登錄、退出系統的相關日志1.4、日志級別1.5、程序日志分析1.6…

C++ 非類成員變量 非類成員函數 全局變量 使用

1 使用特點 加 :: 變量使用 #include <iostream> using namespace std; int qwer 100; int asdf 900; void sitl(){std::cout <<"globe dog is sitting." << std::endl; }class Cat { public:static int num;}; int Cat::num 99;class Dog { …

【小烏龍問題】stm32供電,用過的ch340缺無法被識別

解決&#xff1a;更換正確供電&#xff08;stlink&#xff09;&#xff0c;不能用usb-ttl的僅供電&#xff0c;會干擾的&#xff01;&#xff01;&#xff01;&#xff01; 原來用stlink供電&#xff0c;今天沒拿就想著usb-ttl的電源供電&#xff0c;然后用ch340傳輸數據&…

使用 Navicat 17 for PostgreSQL 時,請問哪個版本支持 PostgreSQL 的 20150623 版本?還是每個版本都支持?

&#x1f9d1;?&#x1f4bb; PostgreSQL 用戶 使用 Navicat 17 for PostgreSQL 時&#xff0c;請問哪個版本支持 PostgreSQL 的 20150623 版本&#xff1f;還是每個版本都支持&#xff1f; &#x1f9d1;?&#x1f527; 官方技術中心 Navicat Premium 17 和 Navicat for P…

游戲引擎學習第305天:在平臺層中使用內存 Arena 的方法與思路

回顧前一天內容&#xff0c;并為今天的開發工作設定方向 我們正在直播制作完整游戲&#xff0c;當前正在實現一個精靈圖&#xff08;sprite graph&#xff09;的排序系統。排序的代碼已經寫完&#xff0c;過程并不復雜&#xff0c;雖然還沒做太多優化&#xff0c;但總體思路比…

PHP-FPM 調優配置建議

1、動態模式 pm dynamic; 最大子進程數&#xff08;根據服務器內存調整&#xff09; pm.max_children 100 //每個PHP-FPM進程大約占用30-50MB內存(ThinkPHP框架本身有一定內存開銷)安全值&#xff1a;8GB內存 / 50MB ≈ 160&#xff0c;保守設置為100 ; 啟動時創建的進程數&…

騰訊2025年校招筆試真題手撕(一)

一、題目 有n 把鑰匙&#xff0c;m 個鎖&#xff0c;每把鎖只能由一把特定的鑰匙打開&#xff0c;其他鑰匙都無法打開。一把鑰匙可能可以打開多把鎖&#xff0c;鑰匙也可以重復使用。 對于任意一把鎖來說&#xff0c;打開它的鑰匙是哪一把是等概率的。但你無法事先知道是哪一把…

【北郵通信系統建模與仿真simulink筆記】(2)2.3搭建仿真模型模塊操作運行仿真

【聲明】 本博客僅用于記錄博主學習內容、分享筆記經驗&#xff0c;不得用作其他非學術、非正規用途&#xff0c;不得商用。本聲明對本博客永久生效&#xff0c;若違反聲明所導致的一切后果&#xff0c;本博客均不負責。 目錄 【聲明】 一、搭建第一個仿真模型 二、模塊操作…

系統與賬戶安全

SYS-01&#xff1a;Windows的賬戶安全 安全配置核心原則&#xff1a; 強密碼策略&#xff1a; 通過組策略設置密碼復雜度&#xff1a; # 啟用密碼復雜度要求 secedit /export /cfg secpolicy.inf # 修改文件中的 "PasswordComplexity 1" secedit /configure /db …