代碼隨想錄算法訓練營第一天 [300.最長遞增子序列 674. 最長連續遞增序列 718. 最長重復子數組]
**一、300.最長遞增子序列 **
鏈接: 代碼隨想錄.
思路:dp[i] 以nums[i]為結尾的遞增子序列最大長度,下標為i的數,需要和下標為0開始一直到下標為i-1的數去做比較
做題狀態:看解析后做出來了
class Solution {
public:int lengthOfLIS(vector<int>& nums) {//dp[i] 以nums[i]為結尾的遞增子序列最大長度vector<int> dp(nums.size(),1);int result = 1;for(int i = 0;i<nums.size();i++){for(int j = 0;j<i;j++){if(nums[i]>nums[j]){dp[i] = max(dp[i],dp[j]+1);}}cout << dp[i] <<' ';result = max(dp[i],result);}return result;}
};
二、674. 最長連續遞增序列
鏈接: 代碼隨想錄.
思路:只需要和自己的前一個數做比較就好了
做題狀態:看解析后做出來了
class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int result = 1;for (int i = 1; i < nums.size(); i++) {if(nums[i]>nums[i-1]){dp[i] = dp[i-1]+1;}cout << dp[i] <<' ';result = max(result,dp[i]);}return result;}
};
三、718. 最長重復子數組
鏈接: 代碼隨想錄.
思路:二維dp數組,遍歷num1和nums2
dp[i][j] 以nums1[i-1] 和nums[j-1]為下標的最長公共子序列長度為dp[i][j]設計為i-1,初始化的時候會方便很多,dp[0][j] 和 dp[i][0]其實是沒有意義的,如果第一個數相同dp[1][1] = dp[0][0]+1 并且dp[1][1] = 1,所以把dp[0][0]初始化為0
做題狀態:看解析后做出來了
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size()+1,vector<int>(nums2.size()+1,0)); //dp[i][j] 以nums1[i-1] 和nums[j-1]為下標的最長公共子序列長度為dp[i][j]int result = 0;for(int i = 1;i<=nums1.size();i++){for(int j = 1;j<=nums2.size();j++){if(nums1[i-1] == nums2[j-1]){dp[i][j] = dp[i-1][j-1]+1;}// cout << dp[i][j]<<" ";result = max(dp[i][j],result);}cout << endl;}return result;}
};