博途多重背景、參數實例--(二)

引用官方技術支持:? ? ? ? ? ? ? ? ? ? ? ?

? 《《

博圖,怎么把DINT類型轉換成TIME,就是MCGS觸摸屏上設置時間,PLC里的定時器TIME

?》》?

我們把上面的實現,封裝成FC,FB塊(FB程序內調用定時器指令時的選項不同-----多重實例/參數實例):

建了一個FC塊和兩個FB塊:

FC塊:

?FB塊(參數實例):

FB塊(多重實例):?

自建DB塊---“定時器塊_fc”(這是個DB塊,忽略命名的點問題,主要給FC用),包含3個結構體,4個定時器

主程序調用結構?

FC塊的數據來自自建DB塊的結構體,FB多重實例塊的數據來自生成背景DB塊,FB參數實例塊的數據來自生成背景DB塊和自建DB塊的定時器。

?

新增組“db”,相當于新建文件夾 ,把調用FB自動生成的背景數據塊,拖進來。使程序簡潔。

調用兩種FB生成的背景數據塊,??上下對比:

同時使能定時器,測試:?

d4336

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/pingmian/88543.shtml
繁體地址,請注明出處:http://hk.pswp.cn/pingmian/88543.shtml
英文地址,請注明出處:http://en.pswp.cn/pingmian/88543.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

單片機基礎

什么是嵌入式系統? 嵌入式系統通常指的是專門為某種功能設計的微型計算機系統,比如智能手表、家電控制板、汽車ECU等。 什么是嵌入式系統的IO? IO(Input/Output,輸入/輸出)就是嵌入式系統與外部世界“交…

全連接神經網絡(MLP)原理與PyTorch實現詳解

一、全連接神經網絡概述全連接神經網絡(Fully Connected Neural Network),也稱為多層感知機(Multi-Layer Perceptron, MLP),是深度學習中最基礎的神經網絡結構之一。它由多個全連接層組成,每一層的神經元與下一層的所有神經元相連接。1.1 神經…

推薦系統-數據分割、性能驗證

推薦系統基礎概念前言 作者根據開源項目 gorse 的每一步提交, 系統性學習推薦系統架構組成以及gorse中使用的推薦算法的實現。 通過參考算法文檔以及代碼實現,作者對gorse的學習過程以及進度 與 博客發布的時間線保持一致數據集分割原因 推薦系統的根本任…

從電商新手到單日變現5000+,我是如何做到閑魚爆單的

很多人想做項目賺錢,卻總是邁不出第一步。今天給大家分享一個可以從電商小白到成功跑通項目,實現單日GMV 5000的項目。今天將分享從選品、內容制作、銷售服務的全過程實戰經驗。1:閑魚實戰,強執行力01實操前的準備執行力就是你的動…

vue3實現pdf文件預覽 - vue-pdf-embed

參考地址:https://juejin.cn/post/7105933034771185701 這個參考文章的代碼直接可以復制使用,樣式也是給到的,但是實現的是一頁一頁的顯示pdf內容,我的需求是要全部展示出來,頁碼切換時是做一個滾動定位操作。 思路&am…

【AI論文】OmniPart:基于語義解耦與結構連貫性的部件感知三維生成

摘要:創建具有顯式、可編輯部件結構的三維資產,對于推動交互式應用的發展至關重要。然而,大多數生成方法僅能生成整體式形狀,限制了其實際應用價值。我們提出OmniPart——一種新型的部件感知三維物體生成框架,旨在實現…

Pandas-數據查看與質量檢查

Pandas-數據查看與質量檢查一、數據查看:快速掌握數據概況1. 整體概覽:shape與info()2. 數值特征預覽:describe()3. 隨機抽樣:head()與sample()二、數據質量檢查:識別與處理問題1. 缺失值檢查與處理處理策略&#xff1…

類和對象拓展——日期類

一.前言通過前面對類和對象的學習&#xff0c;現在我們可以開始實踐日期類的代碼編寫。在實際操作過程中&#xff0c;我會補充之前文章中未提及的相關知識點。二.正文 1. 日期類代碼實現我們先來看看要實現什么功能吧&#xff0c;把他放在Date.h中#pragma once #include<ios…

大模型KV緩存量化誤差補償機制:提升推理效率的關鍵技術

大模型KV緩存量化誤差補償機制&#xff1a;提升推理效率的關鍵技術摘要 隨著大型語言模型&#xff08;LLM&#xff09;參數規模突破千億級別&#xff0c;推理過程中的顯存占用與計算延遲成為制約其實際部署的核心瓶頸。KV緩存&#xff08;Key-Value Cache&#xff09;作為Trans…

QT跨平臺應用程序開發框架(6)—— 常用顯示類控件

目錄 一&#xff0c;Label 1.1 主要屬性 1.2 文本格式 1.3 設置圖片 1.4 其它常用屬性 1.5 設置伙伴 二&#xff0c;LCD Number 2.1 主要屬性 2.2 實現倒計時 ?2.3 兩個問題 三&#xff0c;ProgressBar 3.1 主要屬性 3.2 進度條按時間增長 3.3 改變樣式 3.4 一個問題 四&#…

LINUX文件系統權限,命令解釋器alias,文件查看和查找

1、文件査看:查看/etc/passwd文件的第5行[rootserver ~]# head -5 /etc/passwd | tail -1 #先找到前5行&#xff0c;用管道符過濾&#xff0c;顯示倒數第一行2、文件查找(1)在當前目錄及子目錄中&#xff0c;查找大寫字母開頭的txt文件[rootserver ~]# find / -name "[…

AI圖像修復工具CodeFormer實測:馬賽克去除與畫質增強效果評測

大家好&#xff01;平時看圖片或視頻&#xff0c;是不是特別煩人臉被馬賽克遮住的地方&#xff1f;比如老照片模糊、視頻關鍵部分被打碼&#xff0c;看著很不舒服。今天給大家分享一款超好用的去馬賽克神器——CodeFormer&#xff0c;完全免費&#xff0c;新手也能輕松搞定&…

知識宇宙-思考篇:AI大模型如何重塑軟件開發流程?

名人說&#xff1a;博觀而約取&#xff0c;厚積而薄發。——蘇軾《稼說送張琥》 創作者&#xff1a;Code_流蘇(CSDN)&#xff08;一個喜歡古詩詞和編程的Coder&#x1f60a;&#xff09; 目錄AI大模型重塑軟件開發&#xff1a;從碼農到AI編程伙伴的華麗轉身一、AI大模型的編程&…

Rocky Linux上使用NVM安裝Node.js 18

問題描述 Rocky Linux 9 默認 yum 安裝的 Node.js 版本是16&#xff0c;vite啟動報錯&#xff1a;TypeError: crypto$2.getRandomValues is not a function &#xff0c;需安裝更高版本的 Node.js 使用nvm安裝Node.js的好處 多版本管理&#xff0c;NVM 允許你安裝多個不同版本的…

JVM 中“對象存活判定方法”全面解析

1. 前言 在 Java 開發過程中&#xff0c;我們常常聽到“垃圾回收”&#xff08;Garbage Collection, GC&#xff09;這一術語。JVM 通過垃圾回收機制自動管理內存&#xff0c;極大地簡化了程序員的內存控制負擔。然而&#xff0c;GC 究竟是如何判斷哪些對象該回收、哪些應保留…

蘋果公司高ROE分析

公司通過增加負債提升凈資產收益率&#xff08;ROE&#xff09;的核心機制在于財務杠桿效應和資本結構優化&#xff0c;以下從原理、操作路徑、風險邊界及蘋果案例四維度展開分析&#xff1a;名稱解釋&#xff1a; ROIC(投入資本回報率)&#xff1a;ROICNOPATInvested Capital …

【Linux系統】進程概念

1. 進程概念1.1 進程的本質核心定義用戶視角&#xff1a;程序的動態執行實例&#xff08;如同時運行多個Chrome窗口即多個進程&#xff09;。內核視角&#xff1a;資源分配的最小實體單位&#xff0c;獨享CPU時間片、內存空間和文件資源。現代定義&#xff1a;進程 內核數據結…

從LLM到VLM:視覺語言模型的核心技術與Python實現

本教程的完整代碼可以在GitHub上找到&#xff0c;如果你有任何問題或建議&#xff0c;歡迎交流討論。 引言&#xff1a;為什么需要VLM&#xff1f; 當我們與ChatGPT對話時&#xff0c;它能夠理解復雜的文字描述&#xff0c;生成流暢的回答。但如果我們給它一張圖片&#xff0c…

老系統改造增加初始化,自動化數據源配置(tomcat+jsp+springmvc)

老系統改造增加初始化&#xff0c;自動化數據源配置一、前言二、改造描述1、環境說明2、實現步驟簡要思考三、開始改造1、準備sql初始化文件2、啟動時自動讀取jdbc文件&#xff0c;創建數據源&#xff0c;如未配置&#xff0c;需要一個默認的臨時數據源2.1去掉sping mvc原本配置…

衛星通信終端天線的5種對星模式之二:DVB跟蹤

要實現穩定可靠的衛星通信&#xff0c;地面終端天線必須精準地對準遠方的衛星。對星的過程是一個不斷搜索、不斷逼近的過程&#xff0c;其目標是讓天線波束中心精確指向衛星&#xff0c;從而獲得最大信號接收與發射效率。 衛星通信終端天線的對星技術是保障衛星通信鏈路穩定的…