題目
求下列方程的通解:
{ u x y = u x u y u ? 1 ; u x y = u x u y ; u x y = u x u y u u 2 + 1 ; \begin{cases} u_{xy} = u_x u_y u^{-1}; \\ u_{xy} = u_x u_y; \\ u_{xy} = \dfrac{u_x u_y u}{u^2 + 1}; \end{cases} ????????uxy?=ux?uy?u?1;uxy?=ux?uy?;uxy?=u2+1ux?uy?u?;?
解答
下面分別求解每個方程。
方程 1: u x y = u x u y u ? 1 u_{xy} = u_x u_y u^{-1} uxy?=ux?uy?u?1
該方程可改寫為 u x y = u x u y u u_{xy} = \frac{u_x u_y}{u} uxy?=uux?uy??。
設 v = ln ? u v = \ln u v=lnu,則:
v x = u x u , v y = u y u , v x y = ? ? y ( u x u ) = u x y u ? u x u y u 2 . v_x = \frac{u_x}{u}, \quad v_y = \frac{u_y}{u}, \quad v_{xy} = \frac{\partial}{\partial y} \left( \frac{u_x}{u} \right) = \frac{u_{xy} u - u_x u_y}{u^2}. vx?=uux??,vy?=uuy??,vxy?=?y??(uux??)=u2uxy?u?ux?uy??.
代入原方程 u x y = u x u y u u_{xy} = \frac{u_x u_y}{u} uxy?=uux?uy??,得:
v x y = ( u x u y u ) u ? u x u y u 2 = u x u y ? u x u y u 2 = 0. v_{xy} = \frac{ \left( \frac{u_x u_y}{u} \right) u - u_x u_y }{u^2} = \frac{u_x u_y - u_x u_y}{u^2} = 0. vxy?=u2(uux?uy??)u?ux?uy??=u2ux?uy??ux?uy??=0.
因此, v x y = 0 v_{xy} = 0 vxy?=0,其通解為 v ( x , y ) = f ( x ) + g ( y ) v(x, y) = f(x) + g(y) v(x,y)=f(x)+g(y),其中 f ( x ) f(x) f(x) 和 g ( y ) g(y) g(y) 為任意可微函數。
還原變量, ln ? u = f ( x ) + g ( y ) \ln u = f(x) + g(y) lnu=f(x)+g(y),即:
u ( x , y ) = e f ( x ) + g ( y ) = a ( x ) b ( y ) , u(x, y) = e^{f(x) + g(y)} = a(x) b(y), u(x,y)=ef(x)+g(y)=a(x)b(y),
其中 a ( x ) = e f ( x ) a(x) = e^{f(x)} a(x)=ef(x), b ( y ) = e g ( y ) b(y) = e^{g(y)} b(y)=eg(y) 為任意可微函數。
驗證:若 u = a ( x ) b ( y ) u = a(x) b(y) u=a(x)b(y),則 u x = a ′ b u_x = a' b ux?=a′b, u y = a b ′ u_y = a b' uy?=ab′, u x y = a ′ b ′ u_{xy} = a' b' uxy?=a′b′,而右邊 u x u y u = ( a ′ b ) ( a b ′ ) a b = a ′ b ′ \frac{u_x u_y}{u} = \frac{(a' b)(a b')}{a b} = a' b'