已知樣本集合的協方差矩陣為
C x = 1 10 [ 3 1 1 1 3 ? 1 1 ? 1 3 ] {\bm C}_x = \frac{1}{10} \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix} Cx?=101? ?311?13?1?1?13? ?
使用PCA方法將樣本向量降到二維 。
求解
計算 C x {\bm C}_x Cx?的特征值得到:
λ 1 = 0.1 , λ 2 = λ 3 = 0.4 \lambda_1 = 0.1, \quad \lambda_2 = \lambda_3 = 0.4 λ1?=0.1,λ2?=λ3?=0.4
其對應的特征向量分別為:
u 1 = 1 3 [ 1 ? 1 ? 1 ] , u 2 = 1 6 [ 2 1 1 ] , u 3 = 1 2 [ 0 1 ? 1 ] {\bm u}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \quad {\bm u}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \quad {\bm u}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} u1?=3?1? ?1?1?1? ?,u2?=6?1? ?211? ?,u3?=2?1? ?01?1? ?
取最大的兩個特征值 λ 2 , λ 3 \lambda_2, \lambda_3 λ2?,λ3?對應的特征向量構成壓縮空間,形成新的向量:
y ~ = [ u 2 u 3 ] ? x = [ 2 / 6 1 / 6 1 / 6 0 1 / 2 ? 1 / 2 ] x {\tilde {\bm y}} = \begin{bmatrix} {\bm u}_2 & {\bm u}_3 \end{bmatrix}^\top {\bm x} = \begin{bmatrix} 2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} {\bm x} y~?=[u2??u3??]?x=[2/6?0?1/6?1/2??1/6??1/2??]x
K-L 變換為:
y = W ? x = [ u 1 u 2 u 3 ] ? x = [ 1 / 3 ? 1 / 3 ? 1 / 3 2 / 6 1 / 6 1 / 6 0 1 / 2 ? 1 / 2 ] x {\bm y} = {\bm W}^\top {\bm x} = \begin{bmatrix} {\bm u}_1 & {\bm u}_2 & {\bm u}_3 \end{bmatrix}^\top {\bm x} = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{3} & -1/\sqrt{3} \\ 2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} {\bm x} y=W?x=[u1??u2??u3??]?x= ?1/3?2/6?0??1/3?1/6?1/2???1/3?1/6??1/2?? ?x