【專題】神經網絡期末復習資料(題庫)

神經網絡期末復習資料(題庫)

鏈接:https://blog.csdn.net/Pqf18064375973/article/details/148332887?sharetype=blogdetail&sharerId=148332887&sharerefer=PC&sharesource=Pqf18064375973&sharefrom=mp_from_link

【測試】

  • The —— does not only work accordina to the aldorithm but also can predict a solution for a #&task and make conclusions using its previous experience
    A.Artificial Intelligence
    B.Neural Network
    C.Deep Neural Network
    D.Machine learning
  • Deep learning is a subset of machine learning which is essentially a —— with 3 or more layers.
    A.Machine Learning
    B.Artificial intelligence
    C.Neural network
    D.Big data
  • The —— is this kind of technology that is not an algorithm. it is a network that has weights on it. and you can adiust the weights so thatit leamns. You teach i
    through trials.
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
  • Team of Sir Geoffrey Hinton, also dubbed as “The Father of Deep Learning”, published the research paper on ——
    A.forward propagation
    B.back propagation
    C.deep propagation
    D.accurate propagation
  • —— is a type of artificial neural network which uses sequential data or time series data.
    A.Restricted Boltzmann Machines (RBMs)
    B.Deep Belief Networks (DBNs)
    C.Convolutional Neural Networks (CNNs)
    D.Recurrent Neural Networks (RNNs)
  • Which optimizer has a fixed learning rate?
    A.AdaDelta
    B.RMSprop
    C.Gradient Descent
    D.Adam
  • Some approaches to machine learning tend to focus on learning only one or two layers of representations ofthe data, hence,theyre sometimes callec ——
    A.Shallow Learning
    B.Broad Learning
    C.Deep learning
    D.Neural network
  • Which optimizer performs well on sparse data?
    A.Adam
    B.AdaGrad
    C.RMSprop
    D.Momentum
  • This deep learning algorithm became very popular after the Netflix Competition whereratings for movies and beat most of its competition —— was used as a collaborative filtering technique to predict user
    A.Restricted Boltzmann Machines (RBMs)
    B.Deep Belief Networks (DBNs)
    C.Convolutional Neural Networks (CNNs)
    D.Recurrent Neural Networks(RNNS
  • lmage caption is the example of which type of RNN?
    A.One to One RNN
    B.One to Many RNN
    C.Many to One RNN
    D.Many to Many RNN
  • What is the output range of the ReLU activation function?
    A.(1,1)
    B.[0, ∞)
    C.(0, 1)
    D.(-∞,∞)
  • Operations like data cleaning to find missing values ,to remove useless data and perform basic statistical analysis like drawing plots, comparing diferent features of the data set and more. This is done in which phase of life cycle
    A.Data Acquisition
    B.Data exploration
    C.Modelling
    D Fvaluation
  • How well does the Transformer model handle long-term dependencies?
    A.general
    B.poor
    C.excellent
    D.none
  • —— algorithms use historical data as input to predict new output values.
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
  • Which RNN variant can handle long-term dependencies and is faster?
    A.GRU
    B.LSTM
    C.SimpleRNN
    D.Bidirectional LSTM
  • —— are algorithms or methods used to change the attributes of the neural network such as weights 換and learning rate to reduce the losses
    A.0ptimizers
    B.Neural network program
    C.Matrix
    D.None of these
  • In visual system of mammalian,peripheral part is formed by the eves,theintermediate (by the transmission of nerve impulses -the optic nerves,and the central-the visual centers in the
    A.cerebral cortex.
    B.ears
    C.pulse
    D.shape
  • Mammalian vision is the process of mammals that
    A.Perceiving light,
    B.Analyzing it
    C.Forming subjective sensations
    D.All of these
  • The neural network is this kind of technolgy that is not an alorithm. it is a networkthat has weihts on it and you can adiust the weights so that it leams, You teach it through trials.This Definition is said by
    A.Sir Geoffrey Hinton
    B.Howard Rheingold
    C.Mike caferella
    D.Matei Zaharia
  • CNN layers are
    A.Convolutional Layer
    B.Pooling Layer
    C.Fully connected layer
    D.All of these
  • The term is frequently applied to the project of developing systems endowed with the intellectual processes characteristic ofhumans, such as the ability to reason,discover meaning, generalize, or learn from past experience.
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
  • Which optimizer combines momentum and adaptive learning rate?
    A.Momentum
    B.Adam
    C.AdaGrad
    D.SGD
  • The——is the fundamental building block of neural networks
    A.Artificial Intelligence
    B.Neuron
    C.Deep learning
    D.Machine learning
  • CNN has a.that has several filters to perform the convolution operation
    A.Convolution Layer
    B.Rectified Linear Unit (ReLU)
    C.Pooling Layer
    D.Fully Connected Layer
  • What are the main advantages of the GELU activation function over ReLU?
    A.More efficient calculation
    B.Avoid gradient disappearance
    C.Larger output range
    D.Suitable for hidden layers
  • During image processing first layer’s output is passed on to the next layer which detects more complex features such as ——
    edges
    A.combinational or sequentia!
    B.corners or diagonal
    C.combinational or corners
    D.vertical or corners
  • A convolution tool that separates and identifies the various features of the image for analysis in a process called as——
    A.Feature identification
    B.Feature Extraction
    C.Partial Extraction
    D.Feature recognition
  • —— show very effective results in image and video recognition, natural language processing, and recommender systems.
    A.Feed forward Neural Network- Artificial Neuron
    B.Radial Basis Function Neural Network
    C.Multilayer Perceptron
    D.Convolutional Neural Network
  • —— is useful for regression, classification, dimensionality reduction, feature learning, topic modelling and collaborative filtering
    A.Restricted Boltzmann Machines (RBMs)
    B.Deep Belief Networks (DBNs)
    C.Convolutional Neural Networks (CNNs)
    D.Recurrent Neural Networks (RNNs)
  • Which activation function has the “Dying ReLU” problem?
    A.Leaky ReLU
    B.ReLU
    C.Tanh
    D.Sigmoid
  • In Visual system of mammalian, the capabilities of the nervous system to process informaton received are limited to
    A.tens of bits per second.
    B.hundreds of bits per second.
    C.thousands of bits per second
    D.tens of bytes per second.
  • Modern deep learning often involvesof successive layers of representations
    A.1 or 100
    B.100 or 1000
    C.10 or 100
    D.1 or 2
  • Which optimizer can speed up when dealing with plateau problems?
    A.SGD
    B.Momentum
    C.AdaGrad
    D.Gradient Descent
  • Team of—— , also dubbed as “The Father of Deep Learning”, published the research paper on Back propagation
    A.Mike caferella
    B.Matei Zaharia
    C.Sir Geoffrey clinton
    D.Sir Geoffrey Hinton
  • What scenario is the Softmax activation function typically used for?
    A.Return to mission
    B.Two-category output layer
    C.Multi-classification output layer
    D.Hidden layer
  • Which Phase of deep learning life cycle , gather data from reliable data sources
    A.Problem scoping
    B.Data Acquisition
    C.Data exploration
    D.Modelling
  • —— basically extends the area of an image in which a convolutional neural network processes
    A.Padding
    B.stride in CNN
    C.ANN
    D.Neural Network
  • Which phase of deep learning life cycle takes care about spelling mistakes or maybe labelling the data wrong.
    A.Problem scoping
    B.Data Acquisition
    C.Data exploration
    D.Modelling
  • Full form of deep learning model RBM is ——
    A.Real Boltzmann Machines
    B.Restricted Bussiness Machines
    C.Restricted Boltzmann Machines
    D.Restricted Boltzmann Major
  • fraud detection, spam filtering, malware threat detection, business process automation
    (BPA)and predictive maintenance are examples of
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
    E
  • The output range of the**【 sigmoid 】**activation function is (0, 1)
  • The hyperparameters of the ADAM optimizer include 【 learning rate 】,B1, B2, and ε.
  • In the RNN variant, the Use Case Complexity of Bidirectional LSTM is the**【High】**
  • Yann LeCun built the first convolutional neural network called **【 LeNet 】**in 1988
  • The first layer of image processing usually extracts basic features such as horizontal or diagonal 【edges】
  • AdaDelta optimizers usually do not require a global learning rate.【T F 】
  • The output of the Tanh activation function is zero-mean.【T F】
  • SimpleRNN is suitable for dealing with long-term dependencies.【T F
  • Rectified Linear Unit (RelU) : CNN’s have a ReLU layer to perform several flters to perform the convolution operation.【T F
  • Responsible for this process in mammals is the touch sensory svstem,the foundations of which were formed at an eary stace in the evolution of chordates.【T F

【課后題】

  • —— the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings.

    a. Artificial intelligence

    b. Machine learning

    c. Deep learning

    d. None of the above

  • Which of the following is not a type of Neural network

a. Modular-To-Modular Models.

b. Radial Basis Function Neural Network

c. Multilayer Perceptron

d. Convolutional Neural Network

  • Operations like data cleaning to find missing values , to remove useless data and perform basic statistical analysis like drawing plots, comparing different features of the data set and more. This is done in which phase of life cycle

    a. Data Acquisition

    b. Data exploration

    c. Modelling

    d. Evaluation

  • It is useful for regression, classification, dimensionality reduction, feature learning, topic modelling and collaborative filtering.

    a. Restricted Boltzmann Machines (RBMs)

    b. Deep Belief Networks (DBNs)

    c. Convolutional Neural Networks (CNNs)

    d. Recurrent Neural Networks (RNNs)

  • CNN has a —— that has several filters to perform the convolution operation.

    a. Convolution Layer

    b. Rectified Linear Unit (ReLU)

    c. Pooling Layer

    d. Fully Connected Layer

  • —— can be used to build speech-recognition, image-recognition, and machine-translation software.

    a. Deep Belief Networks (DBNs)

    b. Convolutional Neural Networks (CNNs)

    c. Recurrent Neural Networks (RNNs)

    d. Multilayer Perceptrons (MLPs)

  • Yann LeCun, director of Facebook’s AI Research Group, is the pioneer of ——

    a. Restricted Boltzmann Machines (RBMs)

    b. Deep Belief Networks (DBNs)

    c. Convolutional Neural Networks (CNNs)

    d. Recurrent Neural Networks (RNNs)

  • A ____________ that utilizes the output from the convolution process and predicts the class of the image based on the features extracted in previous stages.

    a. Convolution Layer

    b. Rectified Linear Unit (ReLU)

    c. Pooling Layer

    d. Fully Connected Layer

  • Mammalian vision is the process of mammals that

    a. Perceiving light,

    b. Analyzing it

    c. Forming subjective sensations

    d. All of these

  • A deep CNN model consists of a finite set of processing layers that can learn various features of input data (e.g., image) with _____ level of abstraction.

    a. single

    b. multiple

    c. one

    d. two

  • —— basically extends the area of an image in which a convolutional neural network processes.

    a. Padding

    b. stride in CNN

    c. ANN

    d. Neural Network

  • Advantages of convolution layers are:

    a. Sparse Connectivity

    b. Weight Sharing

    c. A & B

    d. none of these

  • Rosenblatt’s perceptron is basically a classifier.

    a. unary

    b. binary

    c. ternary

    d. All of these

  • The ______ is the fundamental building block of neural networks.

    a. Artificial Intelligence

    b. Neuron

    c. Deep learning

    d. Machine learning

  • It is one kind of backpropagation network which produces a mapping of a static input for static output.

    a. Static back-propagation

    b. Dynamic back-propagation

    c. Concurrent Backpropagation

    d. Recurrent Backpropagation

  • The ______________ does not only work according to the algorithm but also can predict a solution for a task and make conclusions using its previous experience.

    a. Artificial Intelligence

    b. Neural Network

    c. Deep Neural Network

    d. Machine learning

  • Apple’s Siri uses _________ for image recognition and voice recognition respectively.

    a. TensorFlow

    b. PyTorch

    c. Loss Function

    d. Deep Neural Network

  • _______ can be used as an alternative to cross-entropy, which was initially developed to use with a support vector machine algorithm.

    a. Cross Entropy Loss

    b. Hinge Loss

    c. Squared Hinge Loss

    d. All of these

  • ________ are algorithms or methods used to change the attributes of the neural network such as weights and learning rate to reduce the losses.

    a. Optimizers

    b. Neural network program

    c. Matrix

    d. None of these

  • It is an extension of AdaGrad which tends to remove the decaying learning Rate problem of it.

    a. Mini-Batch Gradient Descent

    b. Momentum

    c. Adaptive Gradient Descent (AdaGrad)

    d. AdaDelta

  • ____________ occurs when the derivative or slope will get smaller and smaller as we go backward with every layer during backpropagation.

    a. Adaptive Gradient Descent

    b. Vanishing Gradient

    c. Gradient Descent

    d. None of these

  • Image caption is the example of which type of RNN?

    a. One to One RNN

    b. One to Many RNN

    c. Many to One RNN

    d. Many to Many RNN

  • Full form of GRU is _______

    a. Gated Recurrent Unit

    b. Good Recurrent Universe

    c. Gated Recursive Unit

    d. None of these

  • Recurrent neural networks lie in their diversity of application. When we are dealing with RNNs they have a great ability to deal with various input and output types like

    a. Sentiment Classification

    b. Image Captioning

    c. Language Translation

    d. All of these

  • Which of the following is not an application of autoencoders?

    a. Image Coloring

    b. Feature variation

    c. Dimensionality Reduction

    d. Voice recognition

  • A ______ is an unsupervised deep learning technique that helps a neural network encode unlabeled training data.

    a. Sparse autoencoders

    b. Contractive autoencoder

    c. Deep autoencoder

    d. All of these

  • Which property of autoencoders describes the decompressed outputs will be degraded compared to the original inputs?

    a. Data Specific

    b. Lossy

    c. Lossless

    d. Algorithm specific

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/907658.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/907658.shtml
英文地址,請注明出處:http://en.pswp.cn/news/907658.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

Python訓練營打卡 Day41

簡單CNN 知識回顧 數據增強卷積神經網絡定義的寫法batch歸一化:調整一個批次的分布,常用與圖像數據特征圖:只有卷積操作輸出的才叫特征圖調度器:直接修改基礎學習率 卷積操作常見流程如下: 1. 輸入 → 卷積層 → Batch…

leetcode216.組合總和III:回溯算法中多條件約束下的狀態管理

一、題目深度解析與組合約束條件 題目描述 找出所有相加之和為n的k個數的組合,且滿足以下條件: 每個數只能使用一次(范圍為1到9)所有數字均為唯一的正整數組合中的數字按升序排列 例如,當k3,n9時&#…

Java面試實戰:從Spring到大數據的全棧挑戰

Java面試實戰:從Spring到大數據的全棧挑戰 在某家知名互聯網大廠,嚴肅的面試官正在面試一位名叫謝飛機的程序員。謝飛機以其搞笑的回答和對Java技術棧的獨特見解而聞名。 第一輪:Spring與微服務的探索 面試官:“請你談談Spring…

基于vue框架的動物園飼養管理系統a7s60(程序+源碼+數據庫+調試部署+開發環境)帶論文文檔1萬字以上,文末可獲取,系統界面在最后面。

系統程序文件列表 項目功能:飼養員,健康登記,工作進度,動物信息,進食信息,動物健康,動物醫治,飼料信息,工作留言 開題報告內容 基于Vue框架的動物園飼養管理系統開題報告 一、研究背景與意義 (一)研究背景 隨著城市化進程加快和公眾對生…

docker鏡像與dockerfile

一、docker鏡像 1.什么是鏡像 容器解決應用開發、測試和部署的問題,而鏡像解決應用部署環境問題。鏡像是一個只讀的容器模板, 打包了應用程序和應用程序所依賴的文件系統以及啟動容器的配置文件,是啟動容器的基礎。鏡像所打 包的文件內容就是…

流媒體基礎解析:音視頻封裝格式與傳輸協議

在視頻處理與傳輸的完整流程中,音視頻封裝格式和傳輸協議扮演著至關重要的角色。它們不僅決定了視頻文件的存儲方式,還影響著視頻在網絡上的傳輸效率和播放體驗。今天,我們將深入探討音視頻封裝格式和傳輸協議的相關知識。 音視頻封裝格式 什…

普中STM32F103ZET6開發攻略(一)

各位看官老爺們,點擊關注不迷路喲。你的點贊、收藏,一鍵三連,是我持續更新的動力喲!!! 目錄 普中STM32F103ZET6開發攻略 1. GPIO端口實驗——點亮LED燈 1.1 實驗目的 1.2 實驗原理 1.3 實驗環境和器材…

AWS API Gateway 配置WAF(中國區)

問題 需要給AWS API Gateway配置WAF。 AWS WAF設置 打開AWS WAF首頁,開始創建和配置WAF,如下圖: 設置web acl名稱,然后開始添加aws相關資源,如下圖: 選擇資源類型,但是,我這里出…

測試分類詳解

測試分類 一、按測試對象分類 1. 界面測試 1.1 測試內容介紹 界面測試驗證用戶界面(UI)的視覺呈現和交互邏輯,確保符合設計規范并提供良好的用戶體驗。測試內容包括: 頁面布局和元素對齊字體、顏色和圖標一致性交互反饋(懸停、點擊狀態&a…

打開NRODIC SDK編譯不過怎么處理,keil與segger studio

打開NRODIC SDK編譯不過怎么處理,以下是keil處理. 1,如圖,不要安裝安裝也不會過 2. 不要安裝點擊否 3.點擊確定后進來這個樣子 4.這里選擇這個勾,OK后就不會再有后面的pack_license 5.去掉勾后這里要選擇自己SDK對應的pack版本,我的是8.27.0 6.OK后彈出個界面也要反復選擇…

HarmonyOS ArkUI-X開發中的常見問題及解決方案

一、跨平臺編譯與適配問題 1. 平臺特定API不兼容 ?問題現象?:使用Router模塊的replaceUrl或startAbility等鴻蒙專屬API時,編譯跨平臺工程報錯cant support crossplatform application。 ?解決方案?: 改用ohos.router的跨平臺封裝API&a…

CSS篇-2

4. position 的值分別是相對于哪個位置定位的? position 屬性是 CSS 布局中一個非常核心的概念,它允許我們精確控制元素在文檔中的定位方式,從而脫離或部分脫離正常的文檔流。理解 position 的不同值以及它們各自的定位基準,是實…

設計模式:觀察者模式 - 實戰

一、觀察者模式場景 1.1 什么是觀察者模式? 觀察者模式(Observer Pattern)觀察者模式是一種行為型設計模式,用于定義一種一對多的依賴關系,當對象的狀態發生變化時,所有依賴于它的對象都會自動收到通知并更…

Axure中繼器交互完全指南:核心函數解析×場景實戰×避坑策略(懂得才能應用)

親愛的小伙伴,在您瀏覽之前,煩請關注一下,在此深表感謝!如有幫助請訂閱專欄! Axure產品經理精品視頻課已登錄CSDN可點擊學習https://edu.csdn.net/course/detail/40420 主要內容:中繼器核心函數解析、場景方法詳解、注意事項、特殊函數區別 課程目標:提高中繼器的掌握…

【設計模式-4.5】行為型——迭代器模式

說明:本文介紹設計模式中,行為型設計模式之一的迭代器模式。 定義 迭代器模式(Iterator Pattern),也叫作游標模式(Cursor Pattern),它提供一種按順序訪問集合/容器對象元素的方法&…

鴻蒙OSUniApp自定義手勢識別與操作控制實踐#三方框架 #Uniapp

UniApp自定義手勢識別與操作控制實踐 引言 在移動應用開發中,手勢交互已經成為提升用戶體驗的重要組成部分。本文將深入探討如何在UniApp框架中實現自定義手勢識別與操作控制,通過實際案例幫助開發者掌握這一關鍵技術。我們將以一個圖片查看器為例&…

【數據結構】樹形結構--二叉樹

【數據結構】樹形結構--二叉樹 一.知識補充1.什么是樹2.樹的常見概念 二.二叉樹(Binary Tree)1.二叉樹的定義2.二叉樹的分類3.二叉樹的性質 三.二叉樹的實現1.二叉樹的存儲2.二叉樹的遍歷①.先序遍歷②.中序遍歷③.后序遍歷④.層序遍歷 一.知識補充 1.什…

從認識AI開始-----解密LSTM:RNN的進化之路

前言 我在上一篇文章中介紹了 RNN,它是一個隱變量模型,主要通過隱藏狀態連接時間序列,實現了序列信息的記憶與建模。然而,RNN在實踐中面臨嚴重的“梯度消失”與“長期依賴建模困難”問題: 難以捕捉相隔很遠的時間步之…

接地氣的方式認識JVM(一)

最近在學jvm,浮于表面的學了之后,發現jvm并沒有我想象中的那么神秘,這篇文章將會用接地氣的方式來說一說這些jvm的相關概念以及名詞解釋。 帶著下面兩個問題來閱讀 認識了解JVM大致有什么在代碼運行時的都在背后做了什么 JVM是個啥&#xf…