Linux內核隊列queue.h

文章目錄

  • 一、簡介
  • 二、SLIST單向無尾鏈表
    • 2.1 介紹
    • 2.2 操作
    • 2.3 例子
  • 三、STAILQ單向有尾鏈表
  • 四、LIST雙向無尾鏈表
  • 五、TAILQ雙向有尾鏈表
  • 六、CIRCLEQ循環鏈表
  • 七、queue源碼
  • 參考

一、簡介

queue.h是一個非常經典的文件,定義了一系列宏的操作,它定義了一系列的宏操作,實現了鏈表,尾隊列和循環鏈表。
queue.h定義了5個基本的數據類型:

  • 單向無尾鏈表
  • 單向有尾鏈表
  • 雙向無尾鏈表
  • 雙向有尾鏈表
  • 循環鏈表

queue相關鏈表/隊列的使用流程為:

  1. 定義自己的結構體
  2. 在結構體中使用XXXX_ENTRY定義鏈表/隊列成員變量
  3. 使用XXXX_HEAD定義一個鏈表/隊列頭
  4. 使用XXXX_INIT初始化鏈表/隊列頭(也可在定義時初始化)
  5. 使用相關的INSERT、REMOVE、FOREACH、REPLACE方法操作隊列

幾種類型支持的操作:
在這里插入圖片描述

二、SLIST單向無尾鏈表

2.1 介紹

SLIST是Singly-linked List的縮寫,意為單向無尾鏈表。
在這里插入圖片描述
SLIST適合數據量非常大并且幾乎不需要刪除數據的場合,或者當作堆棧使用。
SLIST相關的源碼:

/** Singly-linked List definitions.*/
#define SLIST_HEAD(name, type)                                              \
struct name {                                                               \struct type *slh_first; /* first element */                             \
}#define SLIST_HEAD_INITIALIZER(head)                                        \{ NULL }#define SLIST_ENTRY(type)                                                   \
struct {                                                                    \struct type *sle_next;  /* next element */                              \
}/** Singly-linked List functions.*/
#define SLIST_INIT(head) do {                                               \(head)->slh_first = NULL;                                               \
} while (/*CONSTCOND*/0)#define SLIST_INSERT_AFTER(slistelm, elm, field) do {                       \(elm)->field.sle_next = (slistelm)->field.sle_next;                     \(slistelm)->field.sle_next = (elm);                                     \
} while (/*CONSTCOND*/0)#define SLIST_INSERT_HEAD(head, elm, field) do {                            \(elm)->field.sle_next = (head)->slh_first;                              \(head)->slh_first = (elm);                                              \
} while (/*CONSTCOND*/0)#define SLIST_REMOVE_HEAD(head, field) do {                                 \(head)->slh_first = (head)->slh_first->field.sle_next;                  \
} while (/*CONSTCOND*/0)#define SLIST_REMOVE(head, elm, type, field) do {                           \if ((head)->slh_first == (elm)) {                                       \SLIST_REMOVE_HEAD((head), field);                                   \}                                                                       \else {                                                                  \struct type *curelm = (head)->slh_first;                            \while(curelm->field.sle_next != (elm))                              \curelm = curelm->field.sle_next;                                \curelm->field.sle_next =                                            \curelm->field.sle_next->field.sle_next;                         \}                                                                       \
} while (/*CONSTCOND*/0)#define SLIST_FOREACH(var, head, field)                                     \for ((var) = SLIST_FIRST((head));                                       \(var);                                                              \(var) = SLIST_NEXT((var), field) )#define SLIST_FOREACH_PREVPTR(var, varp, head, field)                       \for ((varp) = &SLIST_FIRST((head));                                     \((var) = *(varp)) != NULL;                                          \(varp) = &SLIST_NEXT((var), field) )/** Singly-linked List access methods.*/
#define SLIST_EMPTY(head)       ((head)->slh_first == NULL)
#define SLIST_FIRST(head)       ((head)->slh_first)
#define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)

2.2 操作

與單向鏈表相關的宏、方法和函數有:

// definitions
SLIST_HEAD(name, type)
SLIST_HEAD_INITIALIZER(head)
SLIST_ENTRY(type)
// access methods
SLIST_FIRST(head)
SLIST_END(head)
SLIST_EMPTY(head)
SLIST_NEXT(elm, field)
LIST_FOREACH(var, head, field)
SLIST_FOREACH_PREVPTR(var, varp, head, field)
// functions
SLIST_INIT(head)
SLIST_INSERT_AFTER(slistelm, elm, field)
SLIST_INSERT_HEAD(head, elm, field)
SLIST_REMOVE_NEXT(head, elm, field)
SLIST_REMOVE_HEAD(head, field)
SLIST_REMOVE(head, elm, type, field)

宏定義說明

  • SLIST_HEAD用于定義一個單向鏈表數據結構體的頭變量,該結構體只有一個指針成員slh_first,指向第一個type類型的數據結構;name可以不用(填寫);
  • SLIST_HEAD_INITIALIZER用于在定義時初始化SLIST_HEAD定義的數據結構體的頭變量;head可以不用填寫;
  • SLIST_ENTRY則用于定義一個(用戶)結構體的成員變量,該成員變量只包含一個指向type類型的指針sle_next;

與單向鏈表相關的訪問方法有6個

  • SLIST_FIRST用于獲取單向鏈表的第一個元素;
  • SLIST_END定義了尾部的判斷標準;
  • SLIST_EMPTY用于判斷單向鏈表是否為空:空則返回true,否則返回false;
  • SLIST_NEXT用于獲取elm元素的下一個元素,field是前面用SLIST_ENTRY定義的成員變量名;
  • SLIST_FOREACH用于遍歷單向鏈表,var是臨時變量,head是鏈表頭指針(SLIST_HEAD定義的變量),field是SLIST_ENTRY定義的成員變量名;
  • SLIST_FOREACH_PREVPTR與SLIST_FOREACH類似,用于遍歷單向鏈表,不過提供更多的一個臨時指針變量varp,指向var指向元素的地址;

與單向鏈表相關的函數有6個

  • SLIST_INIT用于初始化SLIST_HEAD定義的頭指針變量;當然也可以在使用SLIST_HEAD定義頭指針變量時同時使用SLIST_HEAD_INITIALIZER進行初始化;
  • SLIST_INSERT_AFTER用于將元素elm插入到當前鏈表元素slistelm的后面;
  • SLIST_INSERT_HEAD用于將元素elm插入到當前鏈表head的頭部;head是SLIST_HEAD定義的鏈表頭指針;
  • SLIST_REMOVE_NEXT用于將elm后面的元素刪除,head未使用;注意刪除時判斷elm后面是否還有元素,否則會崩潰;
  • SLIST_REMOVE_HEAD用于刪除第一個元素;注意刪除時判斷head是否為空,否則會崩潰;
  • SLIST_REMOVE用于從head鏈表中刪除elm元素;注意首先判斷elm元素是否在head鏈表中,否則會崩潰;

2.3 例子

#include <stdio.h>
#include <stdlib.h>
#include "queue.h"struct SLIST_ITEM {int value;SLIST_ENTRY(SLIST_ITEM) entry;
};
int main(void) {int i;SLIST_HEAD(,SLIST_ITEM) slist_head;SLIST_INIT(&slist_head);if (SLIST_EMPTY(&slist_head))printf("single list is empty\n");struct SLIST_ITEM *item;struct SLIST_ITEM *item_temp;for( i = 0; i < 10; i += 1){item = (struct SLIST_ITEM *)malloc(sizeof(struct SLIST_ITEM));item->value = i;item->entry.sle_next = NULL;SLIST_INSERT_HEAD(&slist_head, item, entry);}printf("after insert 10 item to single list:\n");SLIST_FOREACH(item, &slist_head, entry)printf("item value = %d\n", item->value);while( SLIST_EMPTY(&slist_head) == 0 ){item_temp = (&slist_head)->slh_first;SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry);free(item_temp);}printf("here");if ( SLIST_EMPTY(&slist_head) )printf("single list is empty\n");        return 0;
}

在這里插入圖片描述

  • SLIST_INSERT_HEAD(&slist_head, item, entry)
    從頭部插入元素,第一個參數為頭節點,第一個參數為要插入的元素,第三個參數為自定義結構體中,自定義的SLIST_ENTRY(SLIST_ITEM)結構體變量名稱。
  • SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry)
    刪除對應元素( 內部僅是指針指向的改變,沒有真正釋放空間 )

三、STAILQ單向有尾鏈表

STAILQ 是 Singly-linked Tail queue 的縮寫,意為單向有尾鏈表。有尾鏈表可作隊列使用。
在這里插入圖片描述
STAILQ相關的源碼

/** Singly-linked Tail queue declarations.*/
#define STAILQ_HEAD(name, type)                                             \
struct name {                                                               \struct type *stqh_first;    /* first element */                         \struct type **stqh_last;    /* addr of last next element */             \
}#define STAILQ_HEAD_INITIALIZER(head)                                       \{ NULL, &(head).stqh_first }#define STAILQ_ENTRY(type)                                                  \
struct {                                                                    \struct type *stqe_next; /* next element */                              \
}/** Singly-linked Tail queue functions.*/
#define STAILQ_INIT(head) do {                                              \(head)->stqh_first = NULL;                                              \(head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)#define STAILQ_INSERT_HEAD(head, elm, field) do {                           \if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)              \(head)->stqh_last = &(elm)->field.stqe_next;                        \(head)->stqh_first = (elm);                                             \
} while (/*CONSTCOND*/0)#define STAILQ_INSERT_TAIL(head, elm, field) do {                           \(elm)->field.stqe_next = NULL;                                          \*(head)->stqh_last = (elm);                                             \(head)->stqh_last = &(elm)->field.stqe_next;                            \
} while (/*CONSTCOND*/0)#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                 \if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)      \(head)->stqh_last = &(elm)->field.stqe_next;                        \(listelm)->field.stqe_next = (elm);                                     \
} while (/*CONSTCOND*/0)#define STAILQ_REMOVE_HEAD(head, field) do {                                \if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \(head)->stqh_last = &(head)->stqh_first;                            \
} while (/*CONSTCOND*/0)#define STAILQ_REMOVE(head, elm, type, field) do {                          \if ((head)->stqh_first == (elm)) {                                      \STAILQ_REMOVE_HEAD((head), field);                                  \} else {                                                                \struct type *curelm = (head)->stqh_first;                           \while (curelm->field.stqe_next != (elm))                            \curelm = curelm->field.stqe_next;                               \if ((curelm->field.stqe_next =                                      \curelm->field.stqe_next->field.stqe_next) == NULL)              \(head)->stqh_last = &(curelm)->field.stqe_next;             \}                                                                       \
} while (/*CONSTCOND*/0)#define STAILQ_FOREACH(var, head, field)                                    \for ((var) = ((head)->stqh_first);                                      \(var);                                                              \(var) = ((var)->field.stqe_next))#define STAILQ_CONCAT(head1, head2) do {                                    \if (!STAILQ_EMPTY((head2))) {                                           \*(head1)->stqh_last = (head2)->stqh_first;                          \(head1)->stqh_last = (head2)->stqh_last;                            \STAILQ_INIT((head2));                                               \}                                                                       \
} while (/*CONSTCOND*/0)/** Singly-linked Tail queue access methods.*/
#define STAILQ_EMPTY(head)          ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head)          ((head)->stqh_first)
#define STAILQ_NEXT(elm, field)     ((elm)->field.stqe_next)

四、LIST雙向無尾鏈表

雙向鏈表有前向的指針,因此可以執行一些前向操作,而且無需遍歷鏈表便可以刪除一些節點。
在這里插入圖片描述
LIST相關的源碼

/** List definitions.*/
#define LIST_HEAD(name, type)                                               \
struct name {                                                               \struct type *lh_first;  /* first element */                             \
}#define LIST_HEAD_INITIALIZER(head)                                         \{ NULL }#define LIST_ENTRY(type)                                                    \
struct {                                                                    \struct type *le_next;   /* next element */                              \struct type **le_prev;  /* address of previous next element */          \
}/** List functions.*/
#define LIST_INIT(head) do {                                                \(head)->lh_first = NULL;                                                \
} while (/*CONSTCOND*/0)#define LIST_INSERT_AFTER(listelm, elm, field) do {                         \if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)          \(listelm)->field.le_next->field.le_prev =                           \&(elm)->field.le_next;                                          \(listelm)->field.le_next = (elm);                                       \(elm)->field.le_prev = &(listelm)->field.le_next;                       \
} while (/*CONSTCOND*/0)#define LIST_INSERT_BEFORE(listelm, elm, field) do {                        \(elm)->field.le_prev = (listelm)->field.le_prev;                        \(elm)->field.le_next = (listelm);                                       \*(listelm)->field.le_prev = (elm);                                      \(listelm)->field.le_prev = &(elm)->field.le_next;                       \
} while (/*CONSTCOND*/0)#define LIST_INSERT_HEAD(head, elm, field) do {                             \if (((elm)->field.le_next = (head)->lh_first) != NULL)                  \(head)->lh_first->field.le_prev = &(elm)->field.le_next;            \(head)->lh_first = (elm);                                               \(elm)->field.le_prev = &(head)->lh_first;                               \
} while (/*CONSTCOND*/0)#define LIST_REMOVE(elm, field) do {                                        \if ((elm)->field.le_next != NULL)                                       \(elm)->field.le_next->field.le_prev =                               \(elm)->field.le_prev;                                           \*(elm)->field.le_prev = (elm)->field.le_next;                           \
} while (/*CONSTCOND*/0)#define LIST_FOREACH(var, head, field)                                      \for ((var) = ((head)->lh_first);                                        \(var);                                                              \(var) = ((var)->field.le_next))/** List access methods.*/
#define LIST_EMPTY(head)        ((head)->lh_first == NULL)
#define LIST_FIRST(head)        ((head)->lh_first)
#define LIST_NEXT(elm, field)   ((elm)->field.le_next)

五、TAILQ雙向有尾鏈表

TAILQ 是 Tail queue 的縮寫,意為雙向有尾鏈表。
有尾鏈表可作隊列使用。
雙向有尾鏈表兼具了雙向鏈表和有尾鏈表的特點。
在這里插入圖片描述
TAILQ相關的源碼

/** Tail queue definitions.*/
#define TAILQ_HEAD(name, type)                                              \
struct name {                                                               \struct type *tqh_first;     /* first element */                         \struct type **tqh_last;     /* addr of last next element */             \
}#define TAILQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).tqh_first }#define TAILQ_ENTRY(type)                                                   \
struct {                                                                    \struct type *tqe_next;      /* next element */                          \struct type **tqe_prev;     /* address of previous next element */      \
}/** Tail queue functions.*/
#define TAILQ_INIT(head) do {                                               \(head)->tqh_first = NULL;                                               \(head)->tqh_last = &(head)->tqh_first;                                  \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_HEAD(head, elm, field) do {                            \if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)                \(head)->tqh_first->field.tqe_prev = &(elm)->field.tqe_next;         \else                                                                    \(head)->tqh_last = &(elm)->field.tqe_next;                          \(head)->tqh_first = (elm);                                              \(elm)->field.tqe_prev = &(head)->tqh_first;                             \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_TAIL(head, elm, field) do {                            \(elm)->field.tqe_next = NULL;                                           \(elm)->field.tqe_prev = (head)->tqh_last;                               \*(head)->tqh_last = (elm);                                              \(head)->tqh_last = &(elm)->field.tqe_next;                              \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                  \if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)        \(elm)->field.tqe_next->field.tqe_prev = &(elm)->field.tqe_next;     \else                                                                    \(head)->tqh_last = &(elm)->field.tqe_next;                          \(listelm)->field.tqe_next = (elm);                                      \(elm)->field.tqe_prev = &(listelm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)#define TAILQ_INSERT_BEFORE(listelm, elm, field) do {                       \(elm)->field.tqe_prev = (listelm)->field.tqe_prev;                      \(elm)->field.tqe_next = (listelm);                                      \*(listelm)->field.tqe_prev = (elm);                                     \(listelm)->field.tqe_prev = &(elm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)#define TAILQ_REMOVE(head, elm, field) do {                                 \if (((elm)->field.tqe_next) != NULL)                                    \(elm)->field.tqe_next->field.tqe_prev = (elm)->field.tqe_prev;      \else                                                                    \(head)->tqh_last = (elm)->field.tqe_prev;                           \*(elm)->field.tqe_prev = (elm)->field.tqe_next;                         \
} while (/*CONSTCOND*/0)#define TAILQ_FOREACH(var, head, field)                                     \for ((var) = ((head)->tqh_first);                                       \(var);                                                              \(var) = ((var)->field.tqe_next))#define TAILQ_FOREACH_REVERSE(var, head, headname, field)                   \for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));    \(var);                                                              \(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))#define TAILQ_CONCAT(head1, head2, field) do {                              \if (!TAILQ_EMPTY(head2)) {                                              \*(head1)->tqh_last = (head2)->tqh_first;                            \(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;             \(head1)->tqh_last = (head2)->tqh_last;                              \TAILQ_INIT((head2));                                                \}                                                                       \
} while (/*CONSTCOND*/0)/** Tail queue access methods.*/
#define TAILQ_EMPTY(head)       ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head)       ((head)->tqh_first)
#define TAILQ_NEXT(elm, field)  ((elm)->field.tqe_next)#define TAILQ_LAST(head, headname)                                          \(*(((struct headname *)((head)->tqh_last))->tqh_last))#define TAILQ_PREV(elm, headname, field)                                    \(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))

六、CIRCLEQ循環鏈表

CIRCLEQ 是 Circular queue 的縮寫,意為循環鏈表。
在這里插入圖片描述
CIRCLEQ相關的源碼

/** Circular queue definitions.*/
#define CIRCLEQ_HEAD(name, type)                                            \
struct name {                                                               \struct type *cqh_first;     /* first element */                         \struct type *cqh_last;      /* last element */                          \
}#define CIRCLEQ_HEAD_INITIALIZER(head)                                      \{ (void *)&head, (void *)&head }#define CIRCLEQ_ENTRY(type)                                                 \
struct {                                                                    \struct type *cqe_next;      /* next element */                          \struct type *cqe_prev;      /* previous element */                      \
}/** Circular queue functions.*/
#define CIRCLEQ_INIT(head) do {                                             \(head)->cqh_first = (void *)(head);                                     \(head)->cqh_last = (void *)(head);                                      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \(elm)->field.cqe_next = (listelm)->field.cqe_next;                      \(elm)->field.cqe_prev = (listelm);                                      \if ((listelm)->field.cqe_next == (void *)(head))                        \(head)->cqh_last = (elm);                                           \else                                                                    \(listelm)->field.cqe_next->field.cqe_prev = (elm);                  \(listelm)->field.cqe_next = (elm);                                      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {               \(elm)->field.cqe_next = (listelm);                                      \(elm)->field.cqe_prev = (listelm)->field.cqe_prev;                      \if ((listelm)->field.cqe_prev == (void *)(head))                        \(head)->cqh_first = (elm);                                          \else                                                                    \(listelm)->field.cqe_prev->field.cqe_next = (elm);                  \(listelm)->field.cqe_prev = (elm);                                      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {                          \(elm)->field.cqe_next = (head)->cqh_first;                              \(elm)->field.cqe_prev = (void *)(head);                                 \if ((head)->cqh_last == (void *)(head))                                 \(head)->cqh_last = (elm);                                           \else                                                                    \(head)->cqh_first->field.cqe_prev = (elm);                          \(head)->cqh_first = (elm);                                              \
} while (/*CONSTCOND*/0)#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {                          \(elm)->field.cqe_next = (void *)(head);                                 \(elm)->field.cqe_prev = (head)->cqh_last;                               \if ((head)->cqh_first == (void *)(head))                                \(head)->cqh_first = (elm);                                          \else                                                                    \(head)->cqh_last->field.cqe_next = (elm);                           \(head)->cqh_last = (elm);                                               \
} while (/*CONSTCOND*/0)#define CIRCLEQ_REMOVE(head, elm, field) do {                               \if ((elm)->field.cqe_next == (void *)(head))                            \(head)->cqh_last = (elm)->field.cqe_prev;                           \else                                                                    \(elm)->field.cqe_next->field.cqe_prev = (elm)->field.cqe_prev;      \if ((elm)->field.cqe_prev == (void *)(head))                            \(head)->cqh_first = (elm)->field.cqe_next;                          \else                                                                    \(elm)->field.cqe_prev->field.cqe_next = (elm)->field.cqe_next;      \
} while (/*CONSTCOND*/0)#define CIRCLEQ_FOREACH(var, head, field)                                   \for ((var) = ((head)->cqh_first);                                       \(var) != (const void *)(head);                                      \(var) = ((var)->field.cqe_next))#define CIRCLEQ_FOREACH_REVERSE(var, head, field)                           \for ((var) = ((head)->cqh_last);                                        \(var) != (const void *)(head);                                      \(var) = ((var)->field.cqe_prev))/** Circular queue access methods.*/
#define CIRCLEQ_EMPTY(head)         ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head)         ((head)->cqh_first)
#define CIRCLEQ_LAST(head)          ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                 \(((elm)->field.cqe_next == (void *)(head))                              \? ((head)->cqh_first)                                               \: (elm->field.cqe_next))#define CIRCLEQ_LOOP_PREV(head, elm, field)                                 \(((elm)->field.cqe_prev == (void *)(head))                              \? ((head)->cqh_last)                                                \: (elm->field.cqe_prev))

七、queue源碼

在Linux系統中的路徑為:/usr/include/sys/queue.h
也可以通過如下網址查看:https://codebrowser.dev/glibc/glibc/misc/sys/queue.h.html
queue.h

/** Copyright (c) 1991, 1993*        The Regents of the University of California.  All rights reserved.** Redistribution and use in source and binary forms, with or without* modification, are permitted provided that the following conditions* are met:* 1. Redistributions of source code must retain the above copyright*    notice, this list of conditions and the following disclaimer.* 2. Redistributions in binary form must reproduce the above copyright*    notice, this list of conditions and the following disclaimer in the*    documentation and/or other materials provided with the distribution.* 3. Neither the name of the University nor the names of its contributors*    may be used to endorse or promote products derived from this software*    without specific prior written permission.** THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF* SUCH DAMAGE.**        @(#)queue.h        8.5 (Berkeley) 8/20/94*/
#ifndef        _QUEUE_H_
#define        _QUEUE_H_
/** This file defines five types of data structures: singly-linked lists,* lists, simple queues, tail queues, and circular queues.** A singly-linked list is headed by a single forward pointer. The* elements are singly linked for minimum space and pointer manipulation* overhead at the expense of O(n) removal for arbitrary elements. New* elements can be added to the list after an existing element or at the* head of the list.  Elements being removed from the head of the list* should use the explicit macro for this purpose for optimum* efficiency. A singly-linked list may only be traversed in the forward* direction.  Singly-linked lists are ideal for applications with large* datasets and few or no removals or for implementing a LIFO queue.** A list is headed by a single forward pointer (or an array of forward* pointers for a hash table header). The elements are doubly linked* so that an arbitrary element can be removed without a need to* traverse the list. New elements can be added to the list before* or after an existing element or at the head of the list. A list* may only be traversed in the forward direction.** A simple queue is headed by a pair of pointers, one the head of the* list and the other to the tail of the list. The elements are singly* linked to save space, so elements can only be removed from the* head of the list. New elements can be added to the list after* an existing element, at the head of the list, or at the end of the* list. A simple queue may only be traversed in the forward direction.** A tail queue is headed by a pair of pointers, one to the head of the* list and the other to the tail of the list. The elements are doubly* linked so that an arbitrary element can be removed without a need to* traverse the list. New elements can be added to the list before or* after an existing element, at the head of the list, or at the end of* the list. A tail queue may be traversed in either direction.** A circle queue is headed by a pair of pointers, one to the head of the* list and the other to the tail of the list. The elements are doubly* linked so that an arbitrary element can be removed without a need to* traverse the list. New elements can be added to the list before or after* an existing element, at the head of the list, or at the end of the list.* A circle queue may be traversed in either direction, but has a more* complex end of list detection.** For details on the use of these macros, see the queue(3) manual page.*/
/** List definitions.*/
#define        LIST_HEAD(name, type)                                                \
struct name {                                                                \struct type *lh_first;        /* first element */                        \
}
#define        LIST_HEAD_INITIALIZER(head)                                        \{ NULL }
#define        LIST_ENTRY(type)                                                \
struct {                                                                \struct type *le_next;        /* next element */                        \struct type **le_prev;        /* address of previous next element */        \
}
/** List functions.*/
#define        LIST_INIT(head) do {                                                \(head)->lh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_AFTER(listelm, elm, field) do {                        \if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)        \(listelm)->field.le_next->field.le_prev =                \&(elm)->field.le_next;                                \(listelm)->field.le_next = (elm);                                \(elm)->field.le_prev = &(listelm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_BEFORE(listelm, elm, field) do {                        \(elm)->field.le_prev = (listelm)->field.le_prev;                \(elm)->field.le_next = (listelm);                                \*(listelm)->field.le_prev = (elm);                                \(listelm)->field.le_prev = &(elm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_HEAD(head, elm, field) do {                                \if (((elm)->field.le_next = (head)->lh_first) != NULL)                \(head)->lh_first->field.le_prev = &(elm)->field.le_next;\(head)->lh_first = (elm);                                        \(elm)->field.le_prev = &(head)->lh_first;                        \
} while (/*CONSTCOND*/0)
#define        LIST_REMOVE(elm, field) do {                                        \if ((elm)->field.le_next != NULL)                                \(elm)->field.le_next->field.le_prev =                         \(elm)->field.le_prev;                                \*(elm)->field.le_prev = (elm)->field.le_next;                        \
} while (/*CONSTCOND*/0)
#define        LIST_FOREACH(var, head, field)                                        \for ((var) = ((head)->lh_first);                                \(var);                                                        \(var) = ((var)->field.le_next))
/** List access methods.*/
#define        LIST_EMPTY(head)                ((head)->lh_first == NULL)
#define        LIST_FIRST(head)                ((head)->lh_first)
#define        LIST_NEXT(elm, field)                ((elm)->field.le_next)
/** Singly-linked List definitions.*/
#define        SLIST_HEAD(name, type)                                                \
struct name {                                                                \struct type *slh_first;        /* first element */                        \
}
#define        SLIST_HEAD_INITIALIZER(head)                                        \{ NULL }
#define        SLIST_ENTRY(type)                                                \
struct {                                                                \struct type *sle_next;        /* next element */                        \
}
/** Singly-linked List functions.*/
#define        SLIST_INIT(head) do {                                                \(head)->slh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_AFTER(slistelm, elm, field) do {                        \(elm)->field.sle_next = (slistelm)->field.sle_next;                \(slistelm)->field.sle_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_HEAD(head, elm, field) do {                        \(elm)->field.sle_next = (head)->slh_first;                        \(head)->slh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE_HEAD(head, field) do {                                \(head)->slh_first = (head)->slh_first->field.sle_next;                \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE(head, elm, type, field) do {                        \if ((head)->slh_first == (elm)) {                                \SLIST_REMOVE_HEAD((head), field);                        \}                                                                \else {                                                                \struct type *curelm = (head)->slh_first;                \while(curelm->field.sle_next != (elm))                        \curelm = curelm->field.sle_next;                \curelm->field.sle_next =                                \curelm->field.sle_next->field.sle_next;                \}                                                                \
} while (/*CONSTCOND*/0)
#define        SLIST_FOREACH(var, head, field)                                        \for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
/** Singly-linked List access methods.*/
#define        SLIST_EMPTY(head)        ((head)->slh_first == NULL)
#define        SLIST_FIRST(head)        ((head)->slh_first)
#define        SLIST_NEXT(elm, field)        ((elm)->field.sle_next)
/** Singly-linked Tail queue declarations.*/
#define        STAILQ_HEAD(name, type)                                        \
struct name {                                                                \struct type *stqh_first;        /* first element */                        \struct type **stqh_last;        /* addr of last next element */                \
}
#define        STAILQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).stqh_first }
#define        STAILQ_ENTRY(type)                                                \
struct {                                                                \struct type *stqe_next;        /* next element */                        \
}
/** Singly-linked Tail queue functions.*/
#define        STAILQ_INIT(head) do {                                                \(head)->stqh_first = NULL;                                        \(head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_HEAD(head, elm, field) do {                        \if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)        \(head)->stqh_last = &(elm)->field.stqe_next;                \(head)->stqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.stqe_next = NULL;                                        \*(head)->stqh_last = (elm);                                        \(head)->stqh_last = &(elm)->field.stqe_next;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\(head)->stqh_last = &(elm)->field.stqe_next;                \(listelm)->field.stqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE_HEAD(head, field) do {                                \if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \(head)->stqh_last = &(head)->stqh_first;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE(head, elm, type, field) do {                        \if ((head)->stqh_first == (elm)) {                                \STAILQ_REMOVE_HEAD((head), field);                        \} else {                                                        \struct type *curelm = (head)->stqh_first;                \while (curelm->field.stqe_next != (elm))                        \curelm = curelm->field.stqe_next;                \if ((curelm->field.stqe_next =                                \curelm->field.stqe_next->field.stqe_next) == NULL) \(head)->stqh_last = &(curelm)->field.stqe_next; \}                                                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_FOREACH(var, head, field)                                \for ((var) = ((head)->stqh_first);                                \(var);                                                        \(var) = ((var)->field.stqe_next))
#define        STAILQ_CONCAT(head1, head2) do {                                \if (!STAILQ_EMPTY((head2))) {                                        \*(head1)->stqh_last = (head2)->stqh_first;                \(head1)->stqh_last = (head2)->stqh_last;                \STAILQ_INIT((head2));                                        \}                                                                \
} while (/*CONSTCOND*/0)
/** Singly-linked Tail queue access methods.*/
#define        STAILQ_EMPTY(head)        ((head)->stqh_first == NULL)
#define        STAILQ_FIRST(head)        ((head)->stqh_first)
#define        STAILQ_NEXT(elm, field)        ((elm)->field.stqe_next)
/** Simple queue definitions.*/
#define        SIMPLEQ_HEAD(name, type)                                        \
struct name {                                                                \struct type *sqh_first;        /* first element */                        \struct type **sqh_last;        /* addr of last next element */                \
}
#define        SIMPLEQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).sqh_first }
#define        SIMPLEQ_ENTRY(type)                                                \
struct {                                                                \struct type *sqe_next;        /* next element */                        \
}
/** Simple queue functions.*/
#define        SIMPLEQ_INIT(head) do {                                                \(head)->sqh_first = NULL;                                        \(head)->sqh_last = &(head)->sqh_first;                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_HEAD(head, elm, field) do {                        \if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)        \(head)->sqh_last = &(elm)->field.sqe_next;                \(head)->sqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.sqe_next = NULL;                                        \*(head)->sqh_last = (elm);                                        \(head)->sqh_last = &(elm)->field.sqe_next;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\(head)->sqh_last = &(elm)->field.sqe_next;                \(listelm)->field.sqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE_HEAD(head, field) do {                                \if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \(head)->sqh_last = &(head)->sqh_first;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE(head, elm, type, field) do {                        \if ((head)->sqh_first == (elm)) {                                \SIMPLEQ_REMOVE_HEAD((head), field);                        \} else {                                                        \struct type *curelm = (head)->sqh_first;                \while (curelm->field.sqe_next != (elm))                        \curelm = curelm->field.sqe_next;                \if ((curelm->field.sqe_next =                                \curelm->field.sqe_next->field.sqe_next) == NULL) \(head)->sqh_last = &(curelm)->field.sqe_next; \}                                                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_FOREACH(var, head, field)                                \for ((var) = ((head)->sqh_first);                                \(var);                                                        \(var) = ((var)->field.sqe_next))
/** Simple queue access methods.*/
#define        SIMPLEQ_EMPTY(head)                ((head)->sqh_first == NULL)
#define        SIMPLEQ_FIRST(head)                ((head)->sqh_first)
#define        SIMPLEQ_NEXT(elm, field)        ((elm)->field.sqe_next)
/** Tail queue definitions.*/
#define        _TAILQ_HEAD(name, type, qual)                                        \
struct name {                                                                \qual type *tqh_first;                /* first element */                \qual type *qual *tqh_last;        /* addr of last next element */        \
}
#define TAILQ_HEAD(name, type)        _TAILQ_HEAD(name, struct type,)
#define        TAILQ_HEAD_INITIALIZER(head)                                        \{ NULL, &(head).tqh_first }
#define        _TAILQ_ENTRY(type, qual)                                        \
struct {                                                                \qual type *tqe_next;                /* next element */                \qual type *qual *tqe_prev;        /* address of previous next element */\
}
#define TAILQ_ENTRY(type)        _TAILQ_ENTRY(struct type,)
/** Tail queue functions.*/
#define        TAILQ_INIT(head) do {                                                \(head)->tqh_first = NULL;                                        \(head)->tqh_last = &(head)->tqh_first;                                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_HEAD(head, elm, field) do {                        \if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)        \(head)->tqh_first->field.tqe_prev =                        \&(elm)->field.tqe_next;                                \else                                                                \(head)->tqh_last = &(elm)->field.tqe_next;                \(head)->tqh_first = (elm);                                        \(elm)->field.tqe_prev = &(head)->tqh_first;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.tqe_next = NULL;                                        \(elm)->field.tqe_prev = (head)->tqh_last;                        \*(head)->tqh_last = (elm);                                        \(head)->tqh_last = &(elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\(elm)->field.tqe_next->field.tqe_prev =                 \&(elm)->field.tqe_next;                                \else                                                                \(head)->tqh_last = &(elm)->field.tqe_next;                \(listelm)->field.tqe_next = (elm);                                \(elm)->field.tqe_prev = &(listelm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_BEFORE(listelm, elm, field) do {                        \(elm)->field.tqe_prev = (listelm)->field.tqe_prev;                \(elm)->field.tqe_next = (listelm);                                \*(listelm)->field.tqe_prev = (elm);                                \(listelm)->field.tqe_prev = &(elm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_REMOVE(head, elm, field) do {                                \if (((elm)->field.tqe_next) != NULL)                                \(elm)->field.tqe_next->field.tqe_prev =                 \(elm)->field.tqe_prev;                                \else                                                                \(head)->tqh_last = (elm)->field.tqe_prev;                \*(elm)->field.tqe_prev = (elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_FOREACH(var, head, field)                                        \for ((var) = ((head)->tqh_first);                                \(var);                                                        \(var) = ((var)->field.tqe_next))
#define        TAILQ_FOREACH_REVERSE(var, head, headname, field)                \for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));        \(var);                                                        \(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define        TAILQ_CONCAT(head1, head2, field) do {                                \if (!TAILQ_EMPTY(head2)) {                                        \*(head1)->tqh_last = (head2)->tqh_first;                \(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;        \(head1)->tqh_last = (head2)->tqh_last;                        \TAILQ_INIT((head2));                                        \}                                                                \
} while (/*CONSTCOND*/0)
/** Tail queue access methods.*/
#define        TAILQ_EMPTY(head)                ((head)->tqh_first == NULL)
#define        TAILQ_FIRST(head)                ((head)->tqh_first)
#define        TAILQ_NEXT(elm, field)                ((elm)->field.tqe_next)
#define        TAILQ_LAST(head, headname) \(*(((struct headname *)((head)->tqh_last))->tqh_last))
#define        TAILQ_PREV(elm, headname, field) \(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
/** Circular queue definitions.*/
#define        CIRCLEQ_HEAD(name, type)                                        \
struct name {                                                                \struct type *cqh_first;                /* first element */                \struct type *cqh_last;                /* last element */                \
}
#define        CIRCLEQ_HEAD_INITIALIZER(head)                                        \{ (void *)&head, (void *)&head }
#define        CIRCLEQ_ENTRY(type)                                                \
struct {                                                                \struct type *cqe_next;                /* next element */                \struct type *cqe_prev;                /* previous element */                \
}
/** Circular queue functions.*/
#define        CIRCLEQ_INIT(head) do {                                                \(head)->cqh_first = (void *)(head);                                \(head)->cqh_last = (void *)(head);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \(elm)->field.cqe_next = (listelm)->field.cqe_next;                \(elm)->field.cqe_prev = (listelm);                                \if ((listelm)->field.cqe_next == (void *)(head))                \(head)->cqh_last = (elm);                                \else                                                                \(listelm)->field.cqe_next->field.cqe_prev = (elm);        \(listelm)->field.cqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {                \(elm)->field.cqe_next = (listelm);                                \(elm)->field.cqe_prev = (listelm)->field.cqe_prev;                \if ((listelm)->field.cqe_prev == (void *)(head))                \(head)->cqh_first = (elm);                                \else                                                                \(listelm)->field.cqe_prev->field.cqe_next = (elm);        \(listelm)->field.cqe_prev = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_HEAD(head, elm, field) do {                        \(elm)->field.cqe_next = (head)->cqh_first;                        \(elm)->field.cqe_prev = (void *)(head);                                \if ((head)->cqh_last == (void *)(head))                                \(head)->cqh_last = (elm);                                \else                                                                \(head)->cqh_first->field.cqe_prev = (elm);                \(head)->cqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_TAIL(head, elm, field) do {                        \(elm)->field.cqe_next = (void *)(head);                                \(elm)->field.cqe_prev = (head)->cqh_last;                        \if ((head)->cqh_first == (void *)(head))                        \(head)->cqh_first = (elm);                                \else                                                                \(head)->cqh_last->field.cqe_next = (elm);                \(head)->cqh_last = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_REMOVE(head, elm, field) do {                                \if ((elm)->field.cqe_next == (void *)(head))                        \(head)->cqh_last = (elm)->field.cqe_prev;                \else                                                                \(elm)->field.cqe_next->field.cqe_prev =                        \(elm)->field.cqe_prev;                                \if ((elm)->field.cqe_prev == (void *)(head))                        \(head)->cqh_first = (elm)->field.cqe_next;                \else                                                                \(elm)->field.cqe_prev->field.cqe_next =                        \(elm)->field.cqe_next;                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_FOREACH(var, head, field)                                \for ((var) = ((head)->cqh_first);                                \(var) != (const void *)(head);                                \(var) = ((var)->field.cqe_next))
#define        CIRCLEQ_FOREACH_REVERSE(var, head, field)                        \for ((var) = ((head)->cqh_last);                                \(var) != (const void *)(head);                                \(var) = ((var)->field.cqe_prev))
/** Circular queue access methods.*/
#define        CIRCLEQ_EMPTY(head)                ((head)->cqh_first == (void *)(head))
#define        CIRCLEQ_FIRST(head)                ((head)->cqh_first)
#define        CIRCLEQ_LAST(head)                ((head)->cqh_last)
#define        CIRCLEQ_NEXT(elm, field)        ((elm)->field.cqe_next)
#define        CIRCLEQ_PREV(elm, field)        ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                \(((elm)->field.cqe_next == (void *)(head))                        \? ((head)->cqh_first)                                        \: (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)                                \(((elm)->field.cqe_prev == (void *)(head))                        \? ((head)->cqh_last)                                        \: (elm->field.cqe_prev))
#endif        /* sys/queue.h */

參考

  1. https://www.codeleading.com/article/52881355491/
  2. https://blog.csdn.net/tissar/article/details/86978743

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/715161.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/715161.shtml
英文地址,請注明出處:http://en.pswp.cn/news/715161.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

筆記72:關于IMU(慣性測量單元)傳感器的作用【不涉及公式推導】

一、IMU傳感器是什么&#xff1a; 慣性測量單元IMU&#xff08;Inertial Measurement Unit&#xff09;是一種使用【加速度計】和【陀螺儀】來測量【物體三軸姿態角&#xff08;空間姿態&#xff09;】的裝置&#xff1b;IMU在坐標系的每個坐標軸上&#xff0c;均安裝有1個陀螺…

90-子集2(回溯算法)

題目 給你一個整數數組 nums &#xff0c;其中可能包含重復元素&#xff0c;請你返回該數組所有可能的子集&#xff08;冪集&#xff09;。 解集 不能 包含重復的子集。返回的解集中&#xff0c;子集可以按 任意順序 排列。 示例 1&#xff1a; 輸入&#xff1a;nums [1,2,2] …

深入理解CSS常見選擇器

標題&#xff1a;深入理解CSS常見選擇器 在CSS中&#xff0c;選擇器是一種強大的工具&#xff0c;用于定位和樣式化HTML文檔中的元素。通過選擇器的靈活運用&#xff0c;我們能夠精準地選擇需要操作的元素&#xff0c;從而實現豐富多彩的頁面布局和設計。本文將重點介紹常見的…

Vue2:用node+express部署Vue項目

一、編譯項目 命令 npm run build執行命令后&#xff0c;我們會在項目文件夾中看到如下生成的文件 二、部署Vue項目 接上一篇&#xff0c;nodeexpress編寫輕量級服務 1、在demo中創建static文件夾 2、將dist目錄中的文件放入static中 3、修改server.js文件 關鍵配置&…

全量知識系統問題及SmartChat給出的答復 之13 解析器+DDD+文法型

Q32. DDD的領域概念和知識系統中設計的解析器之間的關系。 那下面&#xff0c;我們回到前面的問題上來。 前面說到了三種語法解析器&#xff0c;分別是 形式語言的&#xff08;機器或計算機語言&#xff09;、人工語言的和自然語言的。再前面&#xff0c;我們聊到了DDD設計思…

基于java的學生派遣信息管理系統設計開題報告

歡迎添加微信互相交流學習哦&#xff01; 項目源碼&#xff1a;biye2: 畢業設計源碼 一、項目名稱 Java基于學生派遣信息管理系統設計 二、項目背景 隨著科技的發展&#xff0c;互聯網在我國的應用越來越廣泛&#xff0c;尤其是在教育領域。為了能更好地管理學生派遣信息&am…

DayDreamInGIS 之 ArcGIS Pro二次開發 圖層屬性中換行符等特殊字符替換

具體參考ArcMap中類似的問題&#xff0c;本帖開發一個ArcGISPro版的工具 1.基礎庫部分 插件開發&#xff0c;經常需要處理圖層與界面的交互。基礎庫把常用的交互部分做了封裝&#xff0c;方便之后的重復使用。 &#xff08;1&#xff09;下述類定義了數據存儲結構&#xff0…

DFA還原白盒AES密鑰

本期內容是關于某app模擬登錄的,涉及的知識點比較多,有unidbg補環境及輔助還原算法,ida中的md5以及白盒aes,fart脫殼,frida反調試 本章所有樣本及資料均上傳到了123云盤 llb資料官方版下載丨最新版下載丨綠色版下載丨APP下載-123云盤 目錄 首先抓包 fart脫殼 加密位置定位…

0048__Unix傳奇

Unix傳奇 &#xff08;上篇&#xff09;_unix傳奇(上篇)-CSDN博客 Unix傳奇 &#xff08;下篇&#xff09;-CSDN博客 Unix現狀與未來——CSDN對我的采訪_nuix郵件系統行業地位-CSDN博客

win11安裝nodejs

一、下載安裝包 鏈接: https://pan.baidu.com/s/1_df8s1UlgNNaewWrWgI59A?pwdpsjm 提取碼: psjm 二、安裝步驟 1.雙擊安裝包 2.Next> 3.勾選之后&#xff0c;Next> 4.點擊Change&#xff0c;選擇你要安裝的路徑&#xff0c;然后Next> 5.點擊Install安裝 二、…

學生云服務器騰訊云_騰訊云學生學生_騰訊云學生云主機

2024年騰訊云學生服務器優惠活動「云校園」&#xff0c;學生服務器優惠價格&#xff1a;輕量應用服務器2核2G學生價30元3個月、58元6個月、112元一年&#xff0c;輕量應用服務器4核8G配置191.1元3個月、352.8元6個月、646.8元一年&#xff0c;CVM云服務器2核4G配置842.4元一年&…

基于擴散模型的圖像編輯:首篇綜述

AIGC 大模型最火熱的任務之一——基于 Diffusion Model 的圖像編輯(editing)領域的首篇綜述。長達 26 頁&#xff0c;涵蓋 297 篇文獻&#xff01;本文全面研究圖像編輯前沿方法&#xff0c;并根據技術路線精煉地劃分為 3 個大類、14 個子類&#xff0c;通過表格列明每個方法的…

查詢緩存-緩存更新-緩存穿透-緩存雪崩-緩存擊穿

1.查詢緩存 1.2.出現的原因 用戶高并發訪問帶來的服務器讀寫的壓力 1.3.解決方法 添加緩存 2.緩存更新 2.1.出現的原因 出現數據不一致的問題 2.2.解決方法 操作數據庫的時候 更新數據庫刪除緩存 查詢數據的時候設置過期時間 3.緩存穿透 3.1.出現的原因 在高并發訪…

LeetCode 熱題 100 | 圖論(一)

目錄 1 200. 島嶼數量 2 994. 腐爛的橘子 2.1 智障遍歷法 2.2 仿層序遍歷法 菜鳥做題&#xff0c;語言是 C 1 200. 島嶼數量 解題思路&#xff1a; 遍歷二維數組&#xff0c;尋找 “1”&#xff08;若找到則島嶼數量 1&#xff09;尋找與當前 “1” 直接或間接連接在…

Java輸入輸出流詳細解析

Java I/O&#xff08;輸入/輸出&#xff09;主要被用來處理輸入數據和輸出結果。 在Java中&#xff0c;輸入/輸出操作被當作流&#xff08;Stream&#xff09;進行處理。流是一個連續的數據流入或數據流出的通道。流操作在Java中主要可以分為兩種類型&#xff1a;字節流和字符…

基于ssm疫情期間高校防控系統+vue論文

摘 要 傳統信息的管理大部分依賴于管理人員的手工登記與管理&#xff0c;然而&#xff0c;隨著近些年信息技術的迅猛發展&#xff0c;讓許多比較老套的信息管理模式進行了更新迭代&#xff0c;學生信息因為其管理內容繁雜&#xff0c;管理數量繁多導致手工進行處理不能滿足廣大…

‘conda‘ 不是內部或外部命令,也不是可運行的程序 或批處理文件

如果你在運行 conda 命令時收到了 ‘conda’ 不是內部或外部命令&#xff0c;也不是可運行的程序或批處理文件。 的錯誤消息&#xff0c;這可能意味著 Anaconda 并沒有正確地添加到你的系統路徑中。 1.你可以嘗試手動添加 Anaconda 到系統路徑中。以下是在 Windows 系統上添加…

19.2 DeepMetricFi:基于深度度量學習改進Wi-Fi指紋定位

P. Chen and S. Zhang, "DeepMetricFi: Improving Wi-Fi Fingerprinting Localization by Deep Metric Learning," in IEEE Internet of Things Journal, vol. 11, no. 4, pp. 6961-6971, 15 Feb.15, 2024, doi: 10.1109/JIOT.2023.3315289. 摘要 Wi-Fi RSSI指紋定位…

C++內存泄漏:原因、預防、定位

內存泄漏是 C 中常見的問題之一&#xff0c;可能導致程序運行時資源消耗過大、性能下降&#xff0c;甚至程序崩潰。 內存泄漏的原因 1. 未釋放動態分配的內存 在 C 中&#xff0c;通過 new 操作符分配的內存需要手動使用 delete 操作符進行釋放。如果忘記或者由于某種原因未…

調用“每日詩詞”在你的頁面添加一句詩

概述 前幾天瀏覽網站的時候看到頁面上有句詩&#xff0c;打開調試看了下調用的是“每日詩詞”的SDK。本文基于此SDK實現你的頁面添加一句詩。 實現效果 實現 1. 引入SDK <script src"https://sdk.jinrishici.com/v2/browser/jinrishici.js" charset"utf-…