威爾金森功分器基本原理
威爾金森功率分配器的功能是將輸入信號等分或不等分的分配到各個輸出端口,并保持相同輸出相位。環形器雖然有類似功能,但威爾金森功率分配器在應用上具有更寬的帶寬。微帶形功分器的電路結構如圖所示,其中,輸入端口特性阻抗為 Z 0 Z_0 Z0?,兩段分支微帶線電長度為 λ / 4 \lambda/4 λ/4,特性阻抗分別為 Z 02 Z_{02} Z02?和 Z 03 Z_{03} Z03?,終端分別接負載 R 2 R_2 R2?和 R 3 R_3 R3?。
功分器各個端口特性如下:
- 端口1無反射
- 端口2、端口3輸出電壓相等且同相
- 端口2、端口3輸出功率比值為任意指定值 1 / k 2 1/k^2 1/k2
已知
1 Z i n 2 + 1 Z i n 3 = 1 Z 0 ( 1 ) \frac{1}{Z_{in2} } + \frac{1}{Z_{in3} } =\frac{1}{Z_0} (1) Zin2?1?+Zin3?1?=Z0?1?(1)
k 2 = P 3 P 2 ( 2 ) k^{2} = \frac{P3}{P2} (2) k2=P2P3?(2)
P 2 = U 2 2 2 R 2 ( 3 ) P_2 = \frac{U_2^2}{2R_2} (3) P2?=2R2?U22??(3)
P 3 = U 3 2 2 R 3 ( 4 ) P_3 = \frac{U_3^2}{2R_3} (4) P3?=2R3?U32??(4)
U 2 = U 3 ( 5 ) U_2 = U_3 (5) U2?=U3?(5)
四分之一波長傳輸線阻抗變換理論得
Z i n 2 × R 2 = Z 02 2 ( 6 ) Z_{in2} \times R_2 = Z_{02}^{2} (6) Zin2?×R2?=Z022?(6)
Z i n 3 × R 3 = Z 03 2 ( 7 ) Z_{in3} \times R_3 = Z_{03}^{2} (7) Zin3?×R3?=Z032?(7)
由(2)式可知:
k 2 = P 3 P 2 = R 2 R 3 = Z 02 Z 03 ( 8 ) k^{2} = \frac{P3}{P2} = \frac{R2}{R3} = \frac{Z_{02} }{Z_{03} } (8) k2=P2P3?=R3R2?=Z03?Z02??(8)
設 R 2 = k Z 0 ( 9 ) R_2 = kZ_0 (9) R2?=kZ0?(9)
則 R 3 = Z 0 k ( 10 ) R_3 = \frac{Z_0}{k} (10) R3?=kZ0??(10)
將(9)(10)代入(6)(7)中
得
Z i n 2 × k Z 0 = Z 02 2 ( 11 ) Z_{in2} \times kZ_0 = Z_{02}^{2} (11) Zin2?×kZ0?=Z022?(11)
Z i n 3 × Z 0 k = Z 03 2 ( 12 ) Z_{in3} \times \frac{Z_0}{k} = Z_{03}^{2} (12) Zin3?×kZ0??=Z032?(12)?
將(11)(12)代入(1)中
得
k Z 0 Z 02 2 + Z 0 Z 03 2 k = 1 Z 0 ( 13 ) \frac{kZ_{0} }{Z_{02}^{2} } +\frac{Z_0}{Z_{03}^{2}k } = \frac{1}{Z_0} (13) Z022?kZ0??+Z032?kZ0??=Z0?1?(13)
將(8)代入(13)中
得
Z 02 = Z 0 k ( 1 + k 2 ) ( 14 ) Z_{02} = Z_0\sqrt{k(1+k^2)} (14) Z02?=Z0?k(1+k2)?(14)
Z 03 = Z 0 ( 1 + k 2 ) k 3 ( 15 ) Z_{03} = Z_0\sqrt{\frac{(1+k^2)}{k^3} } (15) Z03?=Z0?k3(1+k2)??(15)
詳細的公式推導
為了增加隔離度,在端口2和端口3之間貼加了隔離電阻,阻值為
R = Z 0 ( k + 1 k ) ( 16 ) R=Z_0(k+\frac{1}{k} ) (16) R=Z0?(k+k1?)(16)
k=1時,功率等分。