C++遍歷刪除元素

C++遍歷刪除元素

轉自:http://zencoder.info/2019/10/11/erase-element-from-container/

今天看到一個patch fix從std::map中遍歷刪除元素導致crash問題,突然意識到自己對如何正確地從map等C++容器中刪除元素也沒有很牢固清醒的認知。重新梳理了下這塊的正確做法,記錄在此,以備后忘。

基礎知識

C++的容器按存儲方式分為兩類:

  • 以數組形式存儲的順序容器,如:vector,deque
  • 以不連續節點形式存儲的容易,如:list, set, map

在使用erase方法遍歷刪除元素時,需要注意一些問題,否則就會踩坑。

對容器進行增刪元素操作,可能會使迭代器失效。如果一個元素已經被刪除,則其對應的迭代器會失效,不應該再被使用;否則會導致程序無定義的行為,基本上就會掛了。

正確的遍歷刪除方法

對于遍歷刪除map、list、set可以使用下面2種正確方法:

1. 使用刪除元素之前的迭代器定義下一個元素,建議使用的方式

for (auto it=mymap.begin(); it!=mymap.end();) {if (it->first == target) {mymap.erase(it++); //here is the key} else {it++;}
}

2. 使用erase()返回下一個元素的迭代器

for (auto it=mymap.begin(); it!=mymap.end();) {if (it->first == target) {it = mymap.erase(it);} else {it++;}
}

注意:在對 vector、deque遍歷刪除元素時,可以通過erase的返回值來獲取下一個元素的位置,也就是上面的第2種方法;但不能使用上面的第1種方法來遍歷刪除。

錯誤的遍歷刪除方法

把經常會踩坑的錯誤的寫法貼在下面,作為警示!

下面的寫法是錯誤的!下面的寫法是錯誤的!下面的寫法是錯誤的!

for (auto it=mymap.begin(); it!=mymap.end(); it++) {if (it->first == target) {mymap.erase(it); //這里的寫法是錯誤的,錯誤的,錯誤的!!!//it對應的元素已經被刪除,it迭代器失效,在for循環中執行it++會導致未定義行為}
}

下面的寫法對vector是錯誤的!下面的寫法對vector是錯誤的!下面的寫法對vector是錯誤的!

for (auto it=myvector.begin(); it!=myvector.end();) {if (*it == target) {myvector.erase(it++); //對vector不能工作} else {it++;}
}

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/532497.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/532497.shtml
英文地址,請注明出處:http://en.pswp.cn/news/532497.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

關鍵字庫函數

關鍵字庫函數 轉自&#xff1a;https://leetcode-cn.com/leetbook/read/cpp-interview-highlights/ej3mx1/ sizeof和strlen的區別 strlen 是頭文件<cstring> 中的函數&#xff0c;sizeof 是 C 中的運算符。 strlen 測量的是字符串的實際長度&#xff08;其源代碼如下&…

memcpy和memmove的區別以及內存重疊問題

memcpy和memmove的區別以及內存重疊問題 轉自&#xff1a;https://www.codecomeon.com/posts/89/ 區別 memcpy() 和 memmove() 都是C語言中的庫函數&#xff0c;在頭文件 string.h 中&#xff0c;作用是拷貝一定長度的內存的內容&#xff0c;原型分別如下&#xff1a; void…

從頭搭建一個深度學習框架

從頭搭建一個深度學習框架 轉自&#xff1a;Build a Deep Learning Framework From Scratch 代碼&#xff1a;https://github.com/borgwang/tinynn 當前深度學習框架越來越成熟&#xff0c;對于使用者而言封裝程度越來越高&#xff0c;好處就是現在可以非常快速地將這些框架作為…

關于python import的sys.path路徑問題

關于python import的sys.path路徑問題 sys.path 先說一下 sys.path 這個變量&#xff0c;該變量需要導入 sys 官方庫方可使用&#xff0c;它是一個列表&#xff0c;是當前 python 文件 import 庫時會逐個搜索列表中的路徑。 初始化 sys.path 從這些位置初始化&#xff1a; …

python pdb調試基本命令整理

python pdb調試基本命令整理 使用簡介 啟動調試 侵入式 在 py 文件內部設置&#xff1a; import pdb; pdb.set_trace()程序會在運行到這一行時停下來&#xff0c;進入 pdb 交互。 非侵入式 在運行 py 腳本時&#xff1a; python -m pdb main.py程序會在一啟動時就進入 pdb 交…

Docker概念理解

Docker概念理解 本文非Docker命令大全&#xff0c;而是對Docker的概念、原理等作說明&#xff0c;適合有一定實操經驗后來加深理解。 轉自&#xff1a;docker從入門到實踐 Docker簡介 本章將帶領你進入 Docker 的世界。 什么是 Docker&#xff1f; 用它會帶來什么樣的好處&a…

Dockerfile詳解

Dockerfile詳解 轉自&#xff1a;https://yeasy.gitbook.io/docker_practice/ 使用Dockerfile定制鏡像 從剛才的 docker commit 的學習中&#xff0c;我們可以了解到&#xff0c;鏡像的定制實際上就是定制每一層所添加的配置、文件。如果我們可以把每一層修改、安裝、構建、操…

Dockerfile最佳實踐

Dockerfile最佳實踐 本文是原作者對 Docker 官方文檔中 Best practices for writing Dockerfiles 的理解與翻譯。 轉自&#xff1a;附錄四&#xff1a;Dockerfile 最佳實踐 一般性指南和建議 容器應該是短暫的 通過 Dockerfile 構建的鏡像所啟動的容器應該盡可能短暫&#xf…

Linux內存背后的那些神秘往事

Linux內存背后的那些神秘往事 作者&#xff1a;大白斯基&#xff08;公眾號&#xff1a;后端研究所&#xff09; 轉自&#xff1a;https://mp.weixin.qq.com/s/l_YdpyHht5Ayvrc7LFZNIA 前言 大家好&#xff0c;我的朋友們&#xff01; CPU、IO、磁盤、內存可以說是影響計算機…

mmdeploy快速上手

mmdeploy快速上手 若要將使用 openmmlab 的框架&#xff08;如mmdet、mmcls&#xff09;等訓練的模型進行快速部署&#xff0c;同樣來自 openmmlab 的 mmdeploy 無疑是最合適的選擇&#xff0c;本文將簡單地完成一個 Faster RCNN 模型的部署。 配置 本文基于如下軟硬件配置&…

精簡CUDA教程——CUDA Driver API

精簡CUDA教程——CUDA Driver API tensorRT從零起步邁向高性能工業級部署&#xff08;就業導向&#xff09; 課程筆記&#xff0c;講師講的不錯&#xff0c;可以去看原視頻支持下。 Driver API概述 CUDA 的多級 API CUDA 的 API 有多級&#xff08;下圖&#xff09;&#xff…

CUDA編程入門極簡教程

CUDA編程入門極簡教程 轉自&#xff1a;CUDA編程入門極簡教程 作者&#xff1a;小小將 前言 2006年&#xff0c;NVIDIA公司發布了CUDA&#xff0c;CUDA是建立在NVIDIA的CPUs上的一個通用并行計算平臺和編程模型&#xff0c;基于CUDA編程可以利用GPUs的并行計算引擎來更加高效地…

精簡CUDA教程——CUDA Runtime API

精簡CUDA教程——CUDA Runtime API tensorRT從零起步邁向高性能工業級部署&#xff08;就業導向&#xff09; 課程筆記&#xff0c;講師講的不錯&#xff0c;可以去看原視頻支持下。 Runtime API 概述 環境 圖中可以看到&#xff0c;Runtime API 是基于 Driver API 之上開發的…

Python并發——concurrent.futures梳理

Python并發——concurrent.futures梳理 參考官方文檔&#xff1a; concurrent.futures — 啟動并行任務 Executor對象 class concurrent.funtures.Executor該抽象類是 ThreadPoolExecutor 和 ProcessPoolExecutor 的父類&#xff0c;提供異步執行調用方法。要通過它的子類調用…

TensorRT ONNX 基礎

TensorRT ONNX 基礎 tensorRT從零起步邁向高性能工業級部署&#xff08;就業導向&#xff09; 課程筆記&#xff0c;講師講的不錯&#xff0c;可以去看原視頻支持下。 概述 TensorRT 的核心在于對模型算子的優化&#xff08;合并算子、利用當前 GPU 特性選擇特定的核函數等多種…

回文子串、回文子序列相關題目

回文子串、回文子序列相關題目 回文子串是要連續的&#xff0c;回文子序列可不是連續的。 516. 最長回文子序列 dp數組含義&#xff1a;dp[i][j]dp[i][j]dp[i][j] 表示子序列 s[i,j]s[i,j]s[i,j] 中的最長回文子序列的長度。 dp數組初始化&#xff1a;子序列長度為 1 時&am…

mmdetection tools工具梳理

mmdetection tools工具梳理 mmdetection 是一個非常好用的開源目標檢測框架&#xff0c;我們可以用它方便地訓練自己的目標檢測模型&#xff0c;mmdetection 項目倉庫提供許多實用的工具來實現幫助我們進行各種測試。本篇將梳理以下 mmdetection 項目倉庫 tools 目錄下的各種實…

TensorRT ONNX 基礎(續)

TensorRT ONNX 基礎&#xff08;續&#xff09; PyTorch正確導出ONNX 幾條推薦的原則&#xff0c;可以減少潛在的錯誤&#xff1a; 對于任何使用到 shape、size 返回值的參數時&#xff0c;例如 tensor.view(tensor.size(0), -1) 這類操作&#xff0c;避免直接使用 tensor.s…

frp實現內網穿透極簡教程

frp實現內網穿透極簡教程 本文是內網穿透極簡教程&#xff0c;為求簡潔&#xff0c;我們不介紹為什么內網穿透也不介紹其原理&#xff0c;這里假設各位讀者都已經明確的知道自己的目的&#xff0c;本文僅介紹如何安裝配置 frp 實現內網穿透。 簡單來說&#xff0c;內網穿透就…

圖像預處理之warpaffine與雙線性插值及其高性能實現

圖像預處理之warpaffine與雙線性插值及其高性能實現 視頻講解&#xff1a;https://www.bilibili.com/video/BV1ZU4y1A7EG 代碼Repo&#xff1a;https://github.com/shouxieai/tensorRT_Pro 本文為視頻講解的個人筆記。 warpaffine矩陣變換 對于坐標點的變換&#xff0c;我們通…