Let's call an undirected graph?G=(V,E)G=(V,E)?relatively prime?if and only if for each edge?(v,u)∈E(v,u)∈E??GCD(v,u)=1GCD(v,u)=1?(the greatest common divisor of?vv?and?uu?is?11). If there is no edge between some pair of vertices?vv?and?uu?then the value of?GCD(v,u)GCD(v,u)?doesn't matter. The vertices are numbered from?11?to?|V||V|.
Construct a?relatively prime?graph with?nn?vertices and?mm?edges such that it is connected and it contains neither self-loops nor multiple edges.
If there exists no valid graph with the given number of vertices and edges then output?"Impossible".
If there are multiple answers then print any of them.
The only line contains two integers?nn?and?mm?(1≤n,m≤1051≤n,m≤105) — the number of vertices and the number of edges.
If there exists no valid graph with the given number of vertices and edges then output?"Impossible".
Otherwise print the answer in the following format:
The first line should contain the word?"Possible".
The?ii-th of the next?mm?lines should contain the?ii-th edge?(vi,ui)(vi,ui)?of the resulting graph (1≤vi,ui≤n,vi≠ui1≤vi,ui≤n,vi≠ui). For each pair?(v,u)(v,u)there can be no more pairs?(v,u)(v,u)?or?(u,v)(u,v). The vertices are numbered from?11?to?nn.
If there are multiple answers then print any of them.
5 6
Possible
2 5
3 2
5 1
3 4
4 1
5 4
6 12
Impossible
Here is the representation of the graph from the first example:
?
? ?這題無腦暴力 暴力真的出了奇跡?
? ?暴力枚舉一遍就行了
?
? ??
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn = 1e5 + 10; 4 const int INF = 0x3fffffff; 5 typedef long long LL; 6 using namespace std; 7 int n, m; 8 struct node { 9 int x, y; 10 node () {} 11 node (int x, int y): x(x), y(y) {} 12 } qu[maxn]; 13 int main() { 14 scanf("%d%d", &n, &m); 15 if (n - 1 > m) { 16 printf("Impossible\n"); 17 return 0; 18 } 19 int k = 0, flag = 0; 20 for (int i = 1 ; i <= n ; i++) { 21 for (int j = i + 1 ; j <= n ; j++) { 22 if (__gcd(i, j) == 1) qu[k++] = node(i, j); 23 if (k == m) { 24 flag = 1; 25 break; 26 } 27 } 28 if (flag) break; 29 } 30 if (flag) { 31 printf("Possible\n"); 32 for (int i = 0 ; i < k ; i++) 33 printf("%d %d\n", qu[i].x, qu[i].y); 34 } else printf("Impossible\n"); 35 return 0; 36 }
?