STM32存儲左右互搏 I2C總線FATS讀寫EEPROM ZD24C1MA

STM32存儲左右互搏 I2C總線FATS讀寫EEPROM ZD24C1MA

在較低容量存儲領域,EEPROM是常用的存儲介質,可以通過直接或者文件操作方式進行讀寫。不同容量的EEPROM的地址對應位數不同,在發送字節的格式上有所區別。EEPROM是非快速訪問存儲,因為EEPROM按頁進行組織,在連續操作模式,當跨頁時訪問地址不是跳到下一頁到開始,而是跳到當前頁的首地址,因此跨頁時要重新指定起始地址。而在控制端發送寫操作I2C數據后還需要有等待EEPROM內部操作完成的時間才能進行下一次操作。ZD24C1MA是1M bit / 128K Byte容量的EEPROM,ZD24C1MA的管腳定義為:
在這里插入圖片描述
這里介紹STM32 通過文件系統FATS訪問EEPROM ZD24C1MA的例程。采用STM32CUBEIDE開發平臺,以STM32F401CCU6芯片為例,通過STM32 I2C硬件電路實現讀寫操作,通過UART串口進行控制。

STM32工程配置

首先建立基本工程并設置時鐘:
在這里插入圖片描述
在這里插入圖片描述
在這里插入圖片描述
配置硬件I2C接口,在這里插入圖片描述
在這里插入圖片描述
配置UART1作為通訊串口:
在這里插入圖片描述
在這里插入圖片描述
對FATS文件系統進行配置:
在這里插入圖片描述
在這里插入圖片描述
在這里插入圖片描述
在這里插入圖片描述
保存并生成初始工程代碼:
在這里插入圖片描述

STM32工程代碼

代碼里用到的微秒延時函數參考: STM32 HAL us delay(微秒延時)的指令延時實現方式及優化

ZD24C1MA的設備默認訪問地址為0xA0, ZD24C1MA的存儲單元地址訪問略為特殊,17位地址分為兩部分,最高位的1位放置于I2C設備默認訪問地址的第1位,I2C設備默認訪問地址第0位仍然為讀寫控制位,由于采用硬件I2C控制,庫函數自行通過識別調用的是發送還是接收函數對第0位進行發送前設置,因此,不管是調用庫函數的I2C寫操作還是讀操作,提供的地址相同。17位地址的低16位通過在發送設備地址后的作為跟隨的第一,二個字節發送。

建立ZD24C1MA.h庫頭文件

#ifndef INC_ZD24C1MA_H_
#define INC_ZD24C1MA_H_#include "main.h"void PY_Delay_us_t(uint32_t Delay);
void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len);
void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len);#endif

建立ZD24C1MA.c庫源文件:


#include <string.h>
#include <ZD24C1MA.h>#define Page_Size 256
#define Delay_Param 5
extern I2C_HandleTypeDef hi2c1;
extern uint8_t ZD24C1MA_Default_I2C_Addr ;void ZD24C1MA_Read(uint32_t addr, uint8_t * data, uint32_t len)
{uint8_t ZD24C1MA_I2C_Addr;ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C addressuint8_t RA[2];RA[0] = (addr & 0xFF00)>>8; //high 8-bit access address placed into I2C first dataRA[1] =addr & 0x00FF; //low 8-bit access address placed into I2C first dataHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, &RA[0], 2, 2700); //Write address for readHAL_I2C_Master_Receive(&hi2c1, ZD24C1MA_I2C_Addr, data, len, 2700); //Read data}void ZD24C1MA_Write(uint32_t addr, uint8_t * data, uint32_t len)
{uint8_t ZD24C1MA_I2C_Addr;uint32_t addr_page = addr/Page_Size;uint32_t addr_index = addr%Page_Size;uint32_t TLEN;uint8_t TAD[Page_Size+2];uint32_t i=0;if(len<=(Page_Size-addr_index)){TAD[0] = (addr & 0xFF00) >> 8;TAD[1] = addr & 0x00FF ;memcpy(TAD+2, data, len);ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, len+2, 2700);  //Write dataPY_Delay_us_t(Delay_Param*1000);}else{TAD[0] = (addr & 0xFF00) >> 8;TAD[1] = addr & 0x00FF ;memcpy(TAD+2, data, (Page_Size-addr_index));ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | ((addr>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, (Page_Size-addr_index)+2, 2700);  //Write dataPY_Delay_us_t(Delay_Param*1000);TLEN = (len-(Page_Size-addr_index));while( TLEN >= Page_Size ){addr_page += 1;TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;TAD[1] = (addr_page*Page_Size) & 0x00FF ;memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, Page_Size);ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, Page_Size+2, 2700);  //Write dataHAL_Delay(Delay_Param);i++;TLEN -= Page_Size;PY_Delay_us_t(Delay_Param*1000);}if(TLEN>0){addr_page += 1;TAD[0] = ((addr_page*Page_Size) & 0xFF00 ) >> 8;TAD[1] = (addr_page*Page_Size) & 0x00FF ;memcpy(TAD+2, data + (Page_Size-addr_index) + i*Page_Size, TLEN);ZD24C1MA_I2C_Addr = ZD24C1MA_Default_I2C_Addr | (((addr_page*Page_Size)>>16)<<1); //highest 1-bit access address placed into I2C addressHAL_I2C_Master_Transmit(&hi2c1, ZD24C1MA_I2C_Addr, TAD, TLEN+2, 2700);  //Write dataPY_Delay_us_t(Delay_Param*1000);}}}

對ffconf.h添加包含信息:
在這里插入圖片描述

#include "main.h"
#include "stm32f4xx_hal.h"
#include "ZD24C1MA.h"

修改user_diskio.c,對文件操作函數與底層I2C讀寫提供連接:

/* USER CODE BEGIN Header */
/********************************************************************************* @file    user_diskio.c* @brief   This file includes a diskio driver skeleton to be completed by the user.******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************//* USER CODE END Header */#ifdef USE_OBSOLETE_USER_CODE_SECTION_0
/** Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)* To be suppressed in the future.* Kept to ensure backward compatibility with previous CubeMx versions when* migrating projects.* User code previously added there should be copied in the new user sections before* the section contents can be deleted.*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
#endif/* USER CODE BEGIN DECL *//* Includes ------------------------------------------------------------------*/
#include <string.h>
#include "ff_gen_drv.h"/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*//* Private variables ---------------------------------------------------------*/
/* Disk status */
static volatile DSTATUS Stat = STA_NOINIT;/* USER CODE END DECL *//* Private function prototypes -----------------------------------------------*/
DSTATUS USER_initialize (BYTE pdrv);
DSTATUS USER_status (BYTE pdrv);
DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
#if _USE_WRITE == 1DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
#endif /* _USE_WRITE == 1 */
#if _USE_IOCTL == 1DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff);
#endif /* _USE_IOCTL == 1 */Diskio_drvTypeDef  USER_Driver =
{USER_initialize,USER_status,USER_read,
#if  _USE_WRITEUSER_write,
#endif  /* _USE_WRITE == 1 */
#if  _USE_IOCTL == 1USER_ioctl,
#endif /* _USE_IOCTL == 1 */
};/* Private functions ---------------------------------------------------------*//*** @brief  Initializes a Drive* @param  pdrv: Physical drive number (0..)* @retval DSTATUS: Operation status*/
DSTATUS USER_initialize (BYTE pdrv           /* Physical drive nmuber to identify the drive */
)
{/* USER CODE BEGIN INIT *//**************************SELF DEFINITION PART************/extern uint8_t ZD24C1MA_Default_I2C_Addr ;ZD24C1MA_Default_I2C_Addr =  0xA0; //Pin A2=A1=0return RES_OK;/**********************************************************//*Stat = STA_NOINIT;return Stat;*//* USER CODE END INIT */
}/*** @brief  Gets Disk Status* @param  pdrv: Physical drive number (0..)* @retval DSTATUS: Operation status*/
DSTATUS USER_status (BYTE pdrv       /* Physical drive number to identify the drive */
)
{/* USER CODE BEGIN STATUS *//**************************SELF DEFINITION PART************/switch (pdrv){case 0 :return RES_OK;case 1 :return RES_OK;case 2 :return RES_OK;default:return STA_NOINIT;}/**********************************************************//*Stat = STA_NOINIT;return Stat;*//* USER CODE END STATUS */
}/*** @brief  Reads Sector(s)* @param  pdrv: Physical drive number (0..)* @param  *buff: Data buffer to store read data* @param  sector: Sector address (LBA)* @param  count: Number of sectors to read (1..128)* @retval DRESULT: Operation result*/
DRESULT USER_read (BYTE pdrv,      /* Physical drive nmuber to identify the drive */BYTE *buff,     /* Data buffer to store read data */DWORD sector,   /* Sector address in LBA */UINT count      /* Number of sectors to read */
)
{/* USER CODE BEGIN READ *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR;  /*count status*/}switch (pdrv){case 0:sector <<= 9; //Convert sector number to byte addresslen = count*512;ZD24C1MA_Read(sector, buff, len);return RES_OK;default:return RES_ERROR;}/**********************************************************//*return RES_OK;*//* USER CODE END READ */
}/*** @brief  Writes Sector(s)* @param  pdrv: Physical drive number (0..)* @param  *buff: Data to be written* @param  sector: Sector address (LBA)* @param  count: Number of sectors to write (1..128)* @retval DRESULT: Operation result*/
#if _USE_WRITE == 1
DRESULT USER_write (BYTE pdrv,          /* Physical drive nmuber to identify the drive */const BYTE *buff,   /* Data to be written */DWORD sector,       /* Sector address in LBA */UINT count          /* Number of sectors to write */
)
{/* USER CODE BEGIN WRITE *//* USER CODE HERE *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR;  /*count status*/}switch (pdrv){case 0:sector <<= 9; //Convert sector number to byte addresslen = count*512;ZD24C1MA_Write(sector, (uint8_t *)buff,len);return RES_OK;default:return RES_ERROR;}/*********************************************************//*return RES_OK;*//* USER CODE END WRITE */
}
#endif /* _USE_WRITE == 1 *//*** @brief  I/O control operation* @param  pdrv: Physical drive number (0..)* @param  cmd: Control code* @param  *buff: Buffer to send/receive control data* @retval DRESULT: Operation result*/
#if _USE_IOCTL == 1
DRESULT USER_ioctl (BYTE pdrv,      /* Physical drive nmuber (0..) */BYTE cmd,       /* Control code */void *buff      /* Buffer to send/receive control data */
)
{/* USER CODE BEGIN IOCTL *//**************************SELF DEFINITION PART************/#define user_sector_byte_size 512DRESULT res;switch(cmd){case CTRL_SYNC:res=RES_OK;break;case GET_SECTOR_SIZE:*(WORD*)buff = user_sector_byte_size;res = RES_OK;break;case GET_BLOCK_SIZE:*(WORD*)buff = 4096/user_sector_byte_size;res = RES_OK;break;case GET_SECTOR_COUNT:*(DWORD*)buff = (128*1024/512);res = RES_OK;break;default:res = RES_PARERR;break;}return res;/**********************************************************//*DRESULT res = RES_ERROR;return res;*//* USER CODE END IOCTL */
}
#endif /* _USE_IOCTL == 1 */

然后在main.c里根據串口輸入命令(16進制單字節)實現如下功能:
0x01. 讀取EEPROM ID
0x02. 裝載FATS文件系統
0x03: 創建/打開文件并從頭位置寫入數據
0x04: 打開文件并從頭位置讀入數據
0x05: 創建/打開文件并從特定位置寫入數據
0x06: 打開文件并從特定位置讀入數據
完整的代碼實現如下:

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fatfs.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "string.h"
#include "ZD24C1MA.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{__IO uint32_t firstms, secondms;__IO uint32_t counter = 0;firstms = HAL_GetTick()+1;secondms = firstms+1;while(uwTick!=firstms) ;while(uwTick!=secondms) counter++;usDelayBase = ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);delayReg = 0;while(delayReg!=usNum) delayReg++;
}void PY_usDelayOptimize(void)
{__IO uint32_t firstms, secondms;__IO float coe = 1.0;firstms = HAL_GetTick();PY_Delay_us_t(1000000) ;secondms = HAL_GetTick();coe = ((float)1000)/(secondms-firstms);usDelayBase = coe*usDelayBase;
}void PY_Delay_us(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t msNum = Delay/1000;__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);if(msNum>0) HAL_Delay(msNum);delayReg = 0;while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_tx;UART_HandleTypeDef huart1;/* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control
uint8_t URX;uint8_t ZD24C1MA_Default_I2C_Addr =  0xA0; //Pin A2=A1=0
uint32_t ZD24C1MA_Access_Addr = 0;   //EEPROM ZD24C1MA access address (17-bit)uint8_t EEPROM_mount_status = 0; //EEPROM fats mount status indication (0: unmount; 1: mount)
uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operationFRESULT retEEPROM;
FIL file;
FATFS *fs;UINT bytesread;
UINT byteswritten;
uint8_t rBuffer[20];      //Buffer for read
uint8_t WBuffer[20] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write#define user_sector_byte_size 512
uint8_t eeprombuffer[user_sector_byte_size];extern char USERPath[4];char * console;
/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 */EEPROM_mount_status = 0;uint32_t EEPROM_Read_Size;extern char USERPath[4];char * dpath = "0:"; //Disk Pathfor(uint8_t i=0; i<4; i++){USERPath[i] = *(dpath+i);}const TCHAR* filepath = "0:test.txt";char cchar[256];console = cchar;/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_I2C1_Init();MX_USART1_UART_Init();MX_FATFS_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();HAL_UART_Receive_IT(&huart1, &URX, 1);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(cmd==1) //Read ID{cmd = 0;printf("EEPROM ID=ZD24C1MAT\r\n\r\n");}else if(cmd==2) //EEPROM File System Mount{cmd = 0;retEEPROM=f_mount(&USERFatFS, (TCHAR const*)USERPath, 1);if (retEEPROM != FR_OK){printf("File system mount failure: %d\r\n", retEEPROM);if(retEEPROM==FR_NO_FILESYSTEM){printf("No file system. Now to format......\r\n");retEEPROM = f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //EEPROM formattingif(retEEPROM == FR_OK){printf("EEPROM formatting success!\r\n");}else{printf("EEPROM formatting failure!\r\n");}}}else{EEPROM_mount_status = 1;printf("File system mount success\r\n");}}else if(cmd==3) //File creation and write{cmd = 0;if(EEPROM_mount_status==0){printf( "\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE );  //Open or create fileif(retEEPROM == FR_OK){printf( "\r\nFile open or creation successful\r\n");retEEPROM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten); //Write dataif(retEEPROM == FR_OK){printf("\r\nFile write successful\r\n");}else{printf("\r\nFile write error: %d\r\n",retEEPROM);}f_close(&file);   //Close file}else{printf("\r\nFile open or creation error %d\r\n",retEEPROM);}}}else if(cmd==4) //File read{cmd = 0;if(EEPROM_mount_status==0){printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open( &file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retEEPROM == FR_OK){printf("\r\nFile open successful\r\n");retEEPROM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread); //Read dataif(retEEPROM == FR_OK){printf("\r\nFile read successful\r\n");PY_Delay_us_t(200000);EEPROM_Read_Size = sizeof(rBuffer);for(uint16_t i = 0;i < EEPROM_Read_Size;i++){printf("%d ", rBuffer[i]);}printf("\r\n");}else{printf("\r\nFile read error: %d\r\n", retEEPROM);}f_close(&file); //Close file}else{printf("\r\nFile open error: %d\r\n", retEEPROM);}}}else if(cmd==5) //File locating write{cmd = 0;if(EEPROM_mount_status==0){printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open( &file, filepath, FA_CREATE_ALWAYS | FA_WRITE);  //Open or create fileif(retEEPROM == FR_OK){printf("\r\nFile open or creation successful\r\n");retEEPROM=f_lseek( &file, f_tell(&file) + sizeof(WBuffer) ); //move file operation pointer, f_tell(&file) gets file head locatingif(retEEPROM == FR_OK){retEEPROM = f_write( &file, (const void *)WBuffer, sizeof(WBuffer), &byteswritten);if(retEEPROM == FR_OK){printf("\r\nFile locating write successful\r\n");}else{printf("\r\nFile locating write error: %d\r\n", retEEPROM);}}else{printf("\r\nFile pointer error: %d\r\n",retEEPROM);}f_close(&file);   //Close file}else{printf("\r\nFile open or creation error %d\r\n",retEEPROM);}}}else if(cmd==6) //File locating read{cmd = 0;if(EEPROM_mount_status==0){printf("\r\nEEPROM File system not mounted: %d\r\n",retEEPROM);}else{retEEPROM = f_open(&file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retEEPROM == FR_OK){printf("\r\nFile open successful\r\n");retEEPROM =  f_lseek(&file,f_tell(&file)+ sizeof(WBuffer)/2); //move file operation pointer, f_tell(&file) gets file head locatingif(retEEPROM == FR_OK){retEEPROM = f_read( &file, (void *)rBuffer, sizeof(rBuffer), &bytesread);if(retEEPROM == FR_OK){printf("\r\nFile locating read successful\r\n");PY_Delay_us_t(200000);EEPROM_Read_Size = sizeof(rBuffer);for(uint16_t i = 0;i < EEPROM_Read_Size;i++){printf("%d ",rBuffer[i]);}printf("\r\n");}else{printf("\r\nFile locating read error: %d\r\n",retEEPROM);}}else{printf("\r\nFile pointer error: %d\r\n",retEEPROM);}f_close(&file);}else{printf("\r\nFile open error: %d\r\n",retEEPROM);}}}PY_Delay_us_t(100);/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 25;RCC_OscInitStruct.PLL.PLLN = 336;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;RCC_OscInitStruct.PLL.PLLQ = 7;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/*** @brief I2C1 Initialization Function* @param None* @retval None*/
static void MX_I2C1_Init(void)
{/* USER CODE BEGIN I2C1_Init 0 *//* USER CODE END I2C1_Init 0 *//* USER CODE BEGIN I2C1_Init 1 *//* USER CODE END I2C1_Init 1 */hi2c1.Instance = I2C1;hi2c1.Init.ClockSpeed = 400000;hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;hi2c1.Init.OwnAddress1 = 0;hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;hi2c1.Init.OwnAddress2 = 0;hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;if (HAL_I2C_Init(&hi2c1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN I2C1_Init 2 *//* USER CODE END I2C1_Init 2 */}/*** @brief USART1 Initialization Function* @param None* @retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** Enable DMA controller clock*/
static void MX_DMA_Init(void)
{/* DMA controller clock enable */__HAL_RCC_DMA1_CLK_ENABLE();/* DMA interrupt init *//* DMA1_Stream6_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA1_Stream6_IRQn, 0, 0);HAL_NVIC_EnableIRQ(DMA1_Stream6_IRQn);}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 *//* GPIO Ports Clock Enable */__HAL_RCC_GPIOH_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();__HAL_RCC_GPIOB_CLK_ENABLE();/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{if(huart==&huart1){cmd = URX;HAL_UART_Receive_IT(&huart1, &URX, 1);}}
/* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */#endif /* USE_FULL_ASSERT */

STM32例程測試

串口指令0x01測試效果如下:
在這里插入圖片描述
串口指令0x02測試效果如下:
在這里插入圖片描述
串口指令0x03測試效果如下:
在這里插入圖片描述
串口指令0x04測試效果如下:
在這里插入圖片描述
串口指令0x05測試效果如下:
在這里插入圖片描述
串口指令0x06測試效果如下:
在這里插入圖片描述

STM32例程下載

STM32F401CCU6 I2C總線FATS讀寫EEPROM ZD24C1MA例程下載

–End–

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/39921.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/39921.shtml
英文地址,請注明出處:http://en.pswp.cn/news/39921.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

vue2+Spring Boot2.7 大文件分片上傳

之前我們文章 手把手帶大家實現 vue2Spring Boot2.7 文件上傳功能 將了上傳文件 但如果文件很大 就不太好處理了 按正常情況甚至因為超量而報錯 這里 我弄了個足夠大的文件 我們先搭建 Spring Boot2.7 環境 首先 application.yml 代碼編寫如下 server:port: 80 upload:path:…

【佳佳怪文獻分享】使用點云從半監督到全監督房間布局估計

標題&#xff1a;From Semi-supervised to Omni-supervised Room Layout Estimation Using Point Cloud 作者&#xff1a;Huan-ang Gao, Beiwen Tian, Pengfei Li, Xiaoxue Chen, Hao Zhao, Guyue Zhou , Yurong Chen and Hongbin Zha 來源&#xff1a;2023 IEEE Internation…

根據源碼,模擬實現 RabbitMQ - 通過 SQLite + MyBatis 設計數據庫(2)

目錄 一、數據庫設計 1.1、數據庫選擇 1.2、環境配置 1.3、建庫建表接口實現 1.4、封裝數據庫操作 1.5、針對 DataBaseManager 進行單元測試 一、數據庫設計 1.1、數據庫選擇 MySQL 是我們最熟悉的數據庫&#xff0c;但是這里我們選擇使用 SQLite&#xff0c;原因如下&am…

手機出現 不讀卡 / 無信號時應該怎么辦?

當手機屏幕亮起&#xff0c;一般在屏幕最上方都會有代表手機卡狀態的顯示&#xff0c;其中網絡信號和讀卡狀態的標識&#xff0c;依舊有很多人分不太清&#xff0c;更不清楚改怎么辦了。 1、當我們的手機里有兩張卡時&#xff0c;則會有兩個信號顯示 2、信號狀態一般是由短到…

CSS自己實現一個步驟條

前言 步驟條是一種用于引導用戶按照特定流程完成任務的導航條&#xff0c;在各種分步表單交互場景中廣泛應用。例如&#xff1a;在HIS系統-門診醫生站中的接診場景中&#xff0c;我們就可以使用步驟條來實現。她的執行步驟分別是&#xff1a;門診病歷>遺囑錄入>完成接診…

ArcGIS Pro基礎入門、制圖、空間分析、影像分析、三維建模、空間統計分析與建模、python融合、案例全流程科研能力提升

目錄 第一章 入門篇 GIS理論及ArcGIS Pro基礎 第二章 基礎篇 ArcGIS數據管理與轉換 第三章 數據編輯與查詢、拓撲檢查 第四章 制圖篇 地圖符號與版面設計 第五章 空間分析篇 ArcGIS矢量空間分析及應用 第六章 ArcGIS柵格空間分析及應用 第七章 影像篇 遙感影像處理 第八…

Python random模塊用法整理

隨機數在計算機科學領域扮演著重要的角色&#xff0c;用于模擬真實世界的隨機性、數據生成、密碼學等多個領域。Python 中的 random 模塊提供了豐富的隨機數生成功能&#xff0c;本文整理了 random 模塊的使用。 文章目錄 Python random 模塊注意事項Python random 模塊的內置…

大語言模型控制生成的過程Trick:自定義LogitsProcessor實踐

前言 在大模型的生成過程中&#xff0c;部分原生的大語言模型未經過特殊的對齊訓練&#xff0c;往往會“胡說八道”的生成一些敏感詞語等用戶不想生成的詞語&#xff0c;最簡單粗暴的方式就是在大模型生成的文本之后&#xff0c;添加敏感詞庫等規則手段進行敏感詞過濾&#xf…

30行JS代碼帶你手寫自動回復語音聊天機器人

&#x1f942;(???)您的點贊&#x1f44d;?評論&#x1f4dd;?收藏?是作者創作的最大動力&#x1f91e; 前言 現如今生活中到處都是聊天機器人的身影&#xff0c;聊天機器人不僅僅能減少人工的聊天壓力&#xff0c;而且十分的可愛有趣&#xff0c;安卓系統的小AI&#xf…

Springboot整合Mybatis調用Oracle存儲過程

1、配置說明 Oracel11g+springboot2.7.14+mybatis3.5.13 目標:springboot整合mybatis訪問oracle中的存儲過程,存儲過程返回游標信息。 mybatis調用oracle中的存儲過程方式 2、工程結構 3、具體實現 3.1、在Oracle中創建測試數據庫表 具體數據可自行添加 create table s…

Lodash——使用與實例

1. 簡介 Lodash是一個一致性、模塊化、高性能的JavaScript實用庫。Lodash通過降低array、number、objects、string等等的使用難度從而讓JavaScript變得簡單。Lodash的模塊方法&#xff0c;非常適用于&#xff1a; 遍歷array、object 和 string對值進行操作和檢測創建符合功能的…

字符個數統計(同類型只統計一次)

思路&#xff1a;因為題目圈定出現的字符都是 ascii 值小于等于127的字符&#xff0c;因此只需要定義一個標記數組大小為128 &#xff0c;然后將字符作為數組下標在數組中進行標記&#xff0c;若數組中沒有標記過表示第一次出現&#xff0c;進行計數&#xff0c;否則表示重復字…

簡單線性回歸:預測事物間簡單關系的利器

文章目錄 &#x1f340;簡介&#x1f340;什么是簡單線性回歸&#xff1f;&#x1f340;簡單線性回歸的應用場景使用步驟&#xff1a;注意事項&#xff1a; &#x1f340;代碼演示&#x1f340;結論 &#x1f340;簡介 在數據科學領域&#xff0c;線性回歸是一種基本而強大的統…

Kali Linux助您網絡安全攻防實戰

Kali Linux&#xff1a;黑客與防御者的神器 Kali Linux是一款專為網絡安全測試和攻防實踐而設計的操作系統。它匯集了大量的安全工具&#xff0c;可以用于滲透測試、漏洞掃描、密碼破解等任務&#xff0c;不僅為黑客提供了強大的攻擊能力&#xff0c;也為安全防御者提供了測試和…

Kafka 入門到起飛 - 什么是 HW 和 LEO?何時更新HW和LEO呢?

上文我們已經學到&#xff0c; 一個Topic&#xff08;主題&#xff09;會有多個Partition&#xff08;分區&#xff09;為了保證高可用&#xff0c;每個分區有多個Replication&#xff08;副本&#xff09;副本分為Leader 和 Follower 兩個角色&#xff0c;Follower 從Leader同…

爬蟲逆向實戰(十八)--某得科技登錄

一、數據接口分析 主頁地址&#xff1a;某得科技 1、抓包 通過抓包可以發現數據接口是AjaxLogin 2、判斷是否有加密參數 請求參數是否加密&#xff1f; 查看“載荷”模塊可以發現有一個password加密參數和一個__RequestVerificationToken 請求頭是否加密&#xff1f; 無…

【Linux】Reactor模式

Reactor模式 Reactor模式的定義 Reactor反應器模式&#xff0c;也叫做分發者模式或通知者模式&#xff0c;是一種將就緒事件派發給對應服務處理程序的事件設計模式。 Reactor模式的角色構成 Reactor主要由以下五個角色構成&#xff1a; reactor模式的角色 角色解釋Handle(句…

保姆級別講解Python數據處理,你絕對能會

名字&#xff1a;阿玥的小東東 學習&#xff1a;Python、C/C 主頁鏈接&#xff1a;阿玥的小東東的博客_CSDN博客-python&&c高級知識,過年必備,C/C知識講解領域博主 目錄 1. 文件讀取 2. 數據處理 3. 處理結果輸出 總的來說 為了咱們讓程序跑起來&#xff0c;我們需…

DAY3,ARM(LED點燈實驗)

1.匯編實現開發板三盞燈點亮熄滅&#xff1b; .text .global _start _start: /**********LED123點燈**************/RCC_INIT:1使能PE10 PF10 PE8RCC..寄存器,E[4]1 F[5]1 0x50000a28ldr r0,0x50000a28ldr r1,[r0]orr r1,r1,#(0x3 << 4)str r1,[r0]LED1_INET:2初始化LED…

酷開系統 | 酷開科技大數據,更好的與目標消費人群建立聯系

眾所周知&#xff0c;OTT的一大優勢在于強曝光&#xff0c;能夠給消費者帶來強烈的視覺沖擊&#xff0c;強化品牌認知。但是&#xff0c;要想達到提升品牌認知&#xff0c;首先要保證OTT的流量規模&#xff0c;實現對目標人群的有效覆蓋。得年輕消費者得“天下”&#xff0c;年…