算法介紹
Python的hashlib提供了常見的摘要算法,如MD5,SHA1等等。
什么是摘要算法呢?摘要算法又稱哈希算法、散列算法。它通過一個函數,把任意長度的數據轉換為一個長度固定的數據串(通常用16進制的字符串表示)。
摘要算法就是通過摘要函數f()對任意長度的數據data計算出固定長度的摘要digest,目的是為了發現原始數據是否被人篡改過。
摘要算法之所以能指出數據是否被篡改過,就是因為摘要函數是一個單向函數,計算f(data)很容易,但通過digest反推data卻非常困難。而且,對原始數據做一個bit的修改,都會導致計算出的摘要完全不同。
我們以常見的摘要算法MD5為例,計算出一個字符串的MD5值:
復制代碼
import hashlib
md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?')
print md5.hexdigest()
計算結果如下:
d26a53750bc40b38b65a520292f69306
復制代碼
如果數據量很大,可以分塊多次調用update(),最后計算的結果是一樣的:
md5 = hashlib.md5()
md5.update('how to use md5 in ')
md5.update('python hashlib?')
print md5.hexdigest()
MD5是最常見的摘要算法,速度很快,生成結果是固定的128 bit字節,通常用一個32位的16進制字符串表示。另一種常見的摘要算法是SHA1,調用SHA1和調用MD5完全類似:
import hashlib
sha1 = hashlib.sha1()
sha1.update('how to use sha1 in ')
sha1.update('python hashlib?')
print sha1.hexdigest()
SHA1的結果是160 bit字節,通常用一個40位的16進制字符串表示。比SHA1更安全的算法是SHA256和SHA512,不過越安全的算法越慢,而且摘要長度更長。
摘要算法應用
任何允許用戶登錄的網站都會存儲用戶登錄的用戶名和口令。如何存儲用戶名和口令呢?方法是存到數據庫表中:
name | password |
---|---|
michael | 123456 |
bob | abc999 |
alice | alice2008 |
如果以明文保存用戶口令,如果數據庫泄露,所有用戶的口令就落入黑客的手里。此外,網站運維人員是可以訪問數據庫的,也就是能獲取到所有用戶的口令。正確的保存口令的方式是不存儲用戶的明文口令,而是存儲用戶口令的摘要,比如MD5:
username | password |
---|---|
michael | e10adc3949ba59abbe56e057f20f883e |
bob | 878ef96e86145580c38c87f0410ad153 |
alice | 99b1c2188db85afee403b1536010c2c9 |
考慮這么個情況,很多用戶喜歡用123456,888888,password這些簡單的口令,于是,黑客可以事先計算出這些常用口令的MD5值,得到一個反推表:
'e10adc3949ba59abbe56e057f20f883e': '123456'
'21218cca77804d2ba1922c33e0151105': '888888'
'5f4dcc3b5aa765d61d8327deb882cf99': 'password'
這樣,無需破解,只需要對比數據庫的MD5,黑客就獲得了使用常用口令的用戶賬號。
對于用戶來講,當然不要使用過于簡單的口令。但是,我們能否在程序設計上對簡單口令加強保護呢?
由于常用口令的MD5值很容易被計算出來,所以,要確保存儲的用戶口令不是那些已經被計算出來的常用口令的MD5,這一方法通過對原始口令加一個復雜字符串來實現,俗稱“加鹽”:
hashlib.md5("salt".encode("utf8"))
經過Salt處理的MD5口令,只要Salt不被黑客知道,即使用戶輸入簡單口令,也很難通過MD5反推明文口令。
但是如果有兩個用戶都使用了相同的簡單口令比如123456,在數據庫中,將存儲兩條相同的MD5值,這說明這兩個用戶的口令是一樣的。有沒有辦法讓使用相同口令的用戶存儲不同的MD5呢?
如果假定用戶無法修改登錄名,就可以通過把登錄名作為Salt的一部分來計算MD5,從而實現相同口令的用戶也存儲不同的MD5。
摘要算法在很多地方都有廣泛的應用。要注意摘要算法不是加密算法,不能用于加密(因為無法通過摘要反推明文),只能用于防篡改,但是它的單向計算特性決定了可以在不存儲明文口令的情況下驗證用戶口令。。