java項目經驗行業_行業研究以及如何炫耀您的項目

java項目經驗行業

蘋果 | GOOGLE | 現貨 | 其他 (APPLE | GOOGLE | SPOTIFY | OTHERS)

Editor’s note: The Towards Data Science podcast’s “Climbing the Data Science Ladder” series is hosted by Jeremie Harris. Jeremie helps run a data science mentorship startup called SharpestMinds. You can listen to the podcast below:

編者按:邁向數據科學播客的“攀登數據科學階梯”系列由杰里米·哈里斯(Jeremie Harris)主持。 杰里米(Jeremie)幫助運營一家名為 SharpestMinds 的數據科學指導創業公司 您可以收聽以下播客:

演示地址

Project-building is the single most important activity that you can get up to if you’re trying to keep your machine learning skills sharp or break into data science. But a project won’t do you much good unless you can show it off effectively and get feedback to iterate on it — and until recently, there weren’t many places you could turn to do that.

如果您要保持機器學習技巧的敏捷性或進入數據科學領域,那么項目構建是您可以從事的最重要的一項活動。 但是,除非您可以有效地炫耀它并獲得反饋以對其進行迭代,否則一個項目不會對您有多大好處-直到最近,您還沒有多少地方可以這樣做。

A recent open-source initiative called MadeWithML is trying to change that, by creating an easily shareable repository of crowdsourced data science and machine learning projects, and its founder, former Apple ML researcher and startup founder Goku Mohandas, sat down with me for this episode of the TDS podcast to discuss data science projects, his experiences doing research in industry, and the MadeWithML project.

最近一個名為MadeWithML的開源計劃正試圖通過創建一個易于共享的眾包數據科學和機器學習項目的存儲庫來改變這一現狀 ,其創始人,前Apple ML研究人員和初創公司創始人Goku Mohandas都與我坐下來TDS播客的一位,討論數據科學項目,他在行業中的研究經驗以及MadeWithML項目。

Here were my favourite take-homes:

這是我最喜歡的帶回家:

  • Employers are expecting more and more from machine learning projects. Building a jupyter notebook and using a machine learning model to make interesting predictions just isn’t good enough anymore, and a key step in going beyond this stage is to collect your own data, to ensure that you’re solving a niche problem that other applicants you’re competing with haven’t.

    雇主對機器學習項目的期望越來越高。 建立Jupyter筆記本并使用機器學習模型進行有趣的預測已經遠遠不夠了,超越這一階段的關鍵一步就是收集自己的數據,以確保您正在解決其他人的利基問題。與您競爭的申請人還沒有。
  • Another critical step to include in your projects is deployment: it’s really important to wrap up your model in a basic web app that makes it easy to share and show off. The last thing you’ll want to do is introduce yourself to hiring managers by sending them 400 lines of code to review — sending them a deployed web app instead is like giving them a fun toy to play with, and makes it much more likely that they’ll want to engage with you.

    包含在項目中的另一個關鍵步驟是部署:將模型打包到一個基本的Web應用程序中以使其易于共享和展示非常重要。 您要做的最后一件事是向他們介紹招聘經理,方法是向他們發送400行代碼來進行審查-向他們發送已部署的Web應用程序就像給他們一個有趣的玩具,并且更有可能他們想與您互動。
  • Machine learning has had an open-source culture from the very beginning, and that’s forced a lot of companies that used to be insular, siloed and even secretive to update their operations in order to be able to draw machine learning talent. Apple in particular has managed that transition well, and Goku related some of the major cultural shifts that were required.

    機器學習從一開始就具有開源文化,這迫使許多以前孤立,孤立甚至秘密的公司來更新其業務,以便吸引機器學習人才。 尤其是蘋果公司,已經很好地完成了這一轉變,悟空(Goku)提出了一些必需的重大文化轉變。
  • Many people think that you need a degree in CS to do data science or machine learning, but that couldn’t be further from the truth. As data science has matured, focus has shifted from purely technical skills to business and product skills. It’s no longer enough for data scientists and ML engineers to be able to solve important problems: they now have to be good at identifying problems worth solving. That’s where subject matter expertise can be critical — and that’s something people often start with when they come from non-CS backgrounds. If you’re a former economist, financier, social worker, or you’ve had experience in any particular field, even if it’s not technical, you’re in a great position to understand where ML can be leveraged to solve real problems.

    許多人認為您需要擁有CS學位才能進行數據科學或機器學習,但這離事實還遠。 隨著數據科學的成熟,重點已經從純粹的技術技能轉移到業務和產品技能。 對于數據科學家和ML工程師來說,解決重要問題已不再足夠:他們現在必須善于識別值得解決的問題。 那是主題專業知識至關重要的地方,而這正是人們來自非CS背景時經常要從那里開始的。 如果您是前經濟學家,金融家,社會工作者,或者您有任何特定領域的經驗,即使它不是技術專家,您也很容易理解可以在哪里利用ML解決實際問題。

You can follow Goku on Twitter here, check out Made With ML and their Twitter account, and you can follow me on Twitter here.

您可以在Twitter上關注Goku ,查看Made Made ML 及其Twitter帳戶 ,也可以在Twitter上關注我 。

翻譯自: https://towardsdatascience.com/industry-research-and-how-to-show-off-your-projects-6aa2bfebf01a

java項目經驗行業

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/392364.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/392364.shtml
英文地址,請注明出處:http://en.pswp.cn/news/392364.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

MongoDB教程-使用Node.js從頭開始CRUD應用

In this MongoDB Tutorial from NoobCoder, you will learn how to use MongoDB to create a complete Todo CRUD Application. This project uses MongoDB, Node.js, Express.js, jQuery, Bootstrap, and the Fetch API.在NoobCoder的MongoDB教程中,您將學習如何使…

leetcode 399. 除法求值(bfs)

給你一個變量對數組 equations 和一個實數值數組 values 作為已知條件,其中 equations[i] [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi values[i] 。每個 Ai 或 Bi 是一個表示單個變量的字符串。 另有一些以數組 queries 表示的問題,其中 queries[j]…

【0718作業】收集和整理面向對象的六大設計原則

面向對象的六大設計原則 (1)單一職責原則——SRP (2)開閉原則——OCP (3)里式替換原則——LSP (4)依賴倒置原則——DIP (5)接口隔離原則——ISP (…

數據科學 python_適用于數據科學的Python vs(和)R

數據科學 pythonChoosing the right programming language when taking on a new project is perhaps one of the most daunting decisions programmers often make.在進行新項目時選擇正確的編程語言可能是程序員經常做出的最艱巨的決定之一。 Python and R are no doubt amon…

如何進行有效的需求調研

一、什么是需求調研?需求調研對于一個應用軟件開發來說,是一個系統開發的開始階段,它的輸出“軟件需求分析報告”是設計階段的輸入,需求調研的質量對于一個應用軟件來說,是一個極其重要的階段,它的質量在一…

java中直角三角形第三條邊,Java編程,根據輸入三角形的三個邊邊長,程序能判斷三角形類型為:等邊、等腰、斜角、直角三角形,求代碼...

private static Scanner sc;private static int edge[] new int[3];public static void main(String[] args) {System.out.println("請輸入三角形的三條邊");sc new Scanner(System.in);input();}public static void input() {int index 0;//數組下標while (sc.ha…

react中使用構建緩存_使用React和Netlify從頭開始構建電子商務網站

react中使用構建緩存In this step-by-step, 6-hour tutorial from Coding Addict, you will learn to build an e-commerce site from scratch using React and create-react-app.在這個Coding Addict的分步,為時6小時的教程中,您將學習使用React和creat…

Django+Vue前后端分離項目的部署

部署靜態文件: 靜態文件有兩種方式 1:通過django路由訪問 2:通過nginx直接訪問 方式1: 需要在根目錄的URL文件中增加 url(r^$, TemplateView.as_view(template_name"index.html")),作為入口,在setting中更改…

leetcode 547. 省份數量(bfs)

有 n 個城市,其中一些彼此相連,另一些沒有相連。如果城市 a 與城市 b 直接相連,且城市 b 與城市 c 直接相連,那么城市 a 與城市 c 間接相連。 省份 是一組直接或間接相連的城市,組內不含其他沒有相連的城市。 給你一…

r怎么對兩組數據統計檢驗_數據科學中最常用的統計檢驗是什么

r怎么對兩組數據統計檢驗Business analytics and data science is a convergence of many fields of expertise. Professionals form multiple domains and educational backgrounds are joining the analytics industry in the pursuit of becoming data scientists.業務分析和…

win10專業版激活(cmd方式)

轉載于:https://www.cnblogs.com/bug-baba/p/11225322.html

mit景觀生成技術_永遠不會再為工作感到不知所措:如何使用MIT技術

mit景觀生成技術by Sihui Huang黃思慧 永遠不會再為工作感到不知所措:如何使用MIT技術 (Never feel overwhelmed at work again: how to use the M.I.T. technique) Have you ever felt exhausted after a day at work? At the end of a busy day, you couldn’t …

leetcode 189. 旋轉數組

給定一個數組,將數組中的元素向右移動 k 個位置,其中 k 是非負數。 示例 1: 輸入: [1,2,3,4,5,6,7] 和 k 3 輸出: [5,6,7,1,2,3,4] 解釋: 向右旋轉 1 步: [7,1,2,3,4,5,6] 向右旋轉 2 步: [6,7,1,2,3,4,5] 向右旋轉 3 步: [5,6,7,1,2,3,4] 代碼 cla…

aws ec2 php,如何使用php aws sdk啟動和停止ec2實例

以下是從定義的AMI啟動計算機的基本示例:$image_id ami-3d4ff254; //Ubuntu 12.04$min 1; //the minimum number of instances to start$max 1; //the maximum number of instances to start$options array(SecurityGroupId > default, //replace with your …

python3 遞歸

遞歸調用:  在調用一個函數的過程中,直接或者簡介調用了該函數本身 必須有一個明確的結束條件 遞歸特性:  1. 必須有一個明確的結束條件  2. 每次進入更深一層遞歸時,問題規模相比上次遞歸都應有所減少  3. 遞歸效率不高,…

深度學習概述_深度感測框架概述

深度學習概述I have found the DeepSense framework as one of the promising deep learning architectures for processing Time-Series sensing data. In this brief and intuitive overview, I’ll present the main ideas of the original paper titled “Deep Sense: A Un…

css響應式網格布局生成器_如何使用網格布局模塊使用純CSS創建響應表

css響應式網格布局生成器TL; DR (TL;DR) The most popular way to display a collection of similar data is to use tables, but HTML tables have the drawback of being difficult to make responsive.顯示相似數據集合的最流行方法是使用表,但是HTML表具有難以響…

Axure注冊碼

適用版本 Axure 8.1.0.3377 zdfans.com gP5uuK2gHiIVO3YFZwoKyxAdHpXRGNnZWN8Obntqv7FF3pAz7dTu8B61ySxli 轉載于:https://www.cnblogs.com/mengjianzhou/p/11226260.html

命令行窗口常用的一些小技巧

一. 打開命令行窗口的方式 1. 按住【shift】鍵,在桌面右擊,選擇“在此處打開命令行窗口(W)”,如下圖所示: 2. 按住【開始】 R快捷鍵,彈出運行窗口,輸入cmd,回車(確定)即可。 二. 常用…

php soapserver 參數,PHP SoapServer – 節點中的屬性

PHP肥皂功能是如此瘋狂,我從來沒有發現它的錯誤.我試圖通過SOAP API連接和更新數據到zimbra,并且有很多問題.所以我使用了SimpleXMLElement&卷曲:)在那里你可以像這樣構建你的XML:$xml new SimpleXMLElement(); // create your base$xml $xml->addChild(ta…