adobe 書簽怎么設置_讓我們設置一些規則…沒有Adobe Analytics處理規則

adobe 書簽怎么設置

Originally published at Analyst Admin.

最初發布于Analyst Admin 。

In my experience working with Adobe Analytics, I’ve found that Processing Rules help in some cases, but oftentimes they create more work. I try to avoid using Processing Rules whenever possible. In this post, I will cover the main reasons why using Adobe Analytics Processing Rules is not worth it for me.

在使用Adobe Analytics的經驗中,我發現處理規則在某些情況下會有所幫助,但通常它們會帶來更多工作。 我盡量避免使用處理規則。 在這篇文章中,我將介紹為什么不適合使用Adobe Analytics Processing Rules的主要原因。

跟蹤問題更加困難 (Tracing Issues Is More Difficult)

Image for post

第1部分-附加故障點 (Part 1 — Additional Point of Failure)

Picture this — you see a strange value in your Custom Conversion report, so you begin to investigate. The page data layer looks fine. The data beacon looks fine. You can’t replicate the issue. Then you begin to wonder, maybe the issue is only on certain devices? Or only on certain browsers? You continue to spend time checking and rechecking your tracking. After a while, you remember the Processing Rule you created a year ago, and sure enough, you find that it was the culprit causing the issue.

想象一下-您在“自定義轉化”報告中看到一個奇怪的值,因此開始調查。 頁面數據層看起來不錯。 數據信標看起來不錯。 您無法復制該問題。 然后您開始懷疑,也許問題僅在某些設備上存在? 還是僅在某些瀏覽器上? 您繼續花時間檢查和重新檢查您的跟蹤。 過了一會兒,您還記得一年前創建的“處理規則”,果然,您發現這是導致此問題的罪魁禍首。

In a typical Adobe Analytics data pipeline, data gets collected at the browser, then goes to Adobe for processing. Any point where data is created, collected, or transformed can be a point of failure. For example:

在典型的Adobe Analytics數據管道中,數據在瀏覽器中收集,然后轉到Adobe進行處理。 創建,收集或轉換數據的任何點都可能是故障點。 例如:

  1. The server can send faulty data

    服務器可能發送錯誤數據
  2. The tag manager can be misconfigured

    標簽管理器可能配置錯誤
  3. Adobe Analytics could be filtering your data via Bot Rules or IP Filters

    Adobe Analytics可能通過Bot規則或IP過濾器過濾了您的數據
  4. Adobe Marketing Channel Processing Rules could be miscategorizing your traffic sources

    Adobe Marketing渠道處理規則可能對流量來源進行了錯誤分類

If you add Processing Rules to the pipeline, you would add an additional transformation step. An increase in steps would inherently increase the complexity of the model and introduce an additional point of failure which makes tracing issues more difficult.

如果將“處理規則”添加到管道,則將添加其他轉換步驟。 步驟的增加會固有地增加模型的復雜性并引入額外的故障點,這將使跟蹤問題更加困難。

第2部分-處理規則具有級聯作用 (Part 2 — Processing Rules Have a Cascading Effect)

That’s right — Processing Rules are daisy-chained. This means that variables are transformed and passed down to the next Processing Rule, which makes tracing issues difficult.

沒錯-處理規則是菊花鏈式的。 這意味著變量將被轉換并向下傳遞到下一個處理規則,這使得跟蹤問題變得困難。

Let’s say you have 50 rules, and you identify that rule #25 is transforming your variable. By the time beacon data gets to rule #25, your data could have been transformed 24 different ways. This means that if you see a data beacon with a value “abc”, by the time data gets to rule #25 it could say “xyz” instead. A somewhat useful but human-error-prone way to check what Processing Rules are doing is to take a sample value and manually go through each rule and keep track of the transformations on paper.

假設您有50條規則,并且您確定規則25正在轉換變量。 當信標數據達到規則25時,您的數據可能已經以24種不同的方式進行了轉換。 這意味著,如果您看到數據信標的值為“ abc”,那么當數據到達規則25時,它可能會改為“ xyz”。 檢查處理規則正在執行的一種有用但容易人為錯誤的方法是獲取一個樣本值,然后手動檢查每個規則,并在紙上跟蹤轉換。

Furthermore, you also need to worry about the rules that follow the rule that you are working with. Each rule has the same potential to modify your variable whether it’s before or after the rule that you edit.

此外,您還需要擔心遵循所使用規則的規則。 無論是在編輯規則之前還是之后,每個規則都有修改變量的潛力。

Take this example:

舉個例子:

  • Rule #1: Set v3 on checkout page where campaign = social

    規則1:在結帳頁面上設置v3,其中廣告系列=社交
  • Rule #2: Set c3 from v3

    規則2:從v3設置c3
  • Rule #3: Set v5 into c5

    規則3:將v5設置為c5
  • Rule #4: Patch for v3 missing on cart page

    規則4:購物車頁面上缺少v3補丁
  • Rule #5: Set v4 based on v3 equal to “us|shop”

    規則5:根據v3將v4設置為等于“ us | shop”
  • Rule #6: Set v3 on homepage for mobile

    規則6:在首頁上為手機設置v3
  • Rule #7: Add v3 when v3 is not set

    規則7:未設置v3時添加v3

If you needed to update Rule #4, it would behoove you to also check the rules before and after #4 to make sure the final state of v3 is what you were expecting.

如果您需要更新規則#4,那么您還應該檢查#4之前和之后的規則,以確保v3的最終狀態符合您的期望。

Now picture 100+ rules, a laggy browser, 10 team members, and more not-so-great rule names — It’s a recipe for disaster.

現在可以查看100多個規則,一個瀏覽器緩慢,10個團隊成員以及更多不太好的規則名稱-這是災難的秘訣。

處理規則界面笨拙 (The Processing Rules Interface Is Clunky)

Image for post

When you first load the Processing Rules editor, all rules are collapsed — this makes it impossible to CMD+F (search) by rule definition. Expanding each rule can take a long time since the more rules that you have expanded the worse the whole page lags. I’ve had times where after expanding 100+ rules the page will crash and I need to restart at the top.

首次加載“處理規則”編輯器時,所有規則都將折疊起來-這使得無法通過規則定義進行CMD + F(搜索)。 擴展每個規則可能需要很長時間,因為擴展的規則越多,整個頁面的滯后就越嚴重。 在擴展100多個規則之后,有時頁面會崩潰,而我需要在頂部重新啟動。

In my desperation, I tried every browser imaginable and found that Firefox is the fastest when dealing with 100+ processing rules.

無奈之下,我嘗試了所有可以想象的瀏覽器,發現Firefox在處理100多個處理規則時是最快的。

Bonus: The interface is so clunky and slow that one time while waiting for a rule to expand I built an entire Processing Rules exporting tool that uses the 1.4 APi. Try it here.

獎勵:界面是如此笨拙且緩慢,以至于在等待規則擴展時有一次,我構建了一個使用1.4 APi的完整處理規則導出工具。 在這里嘗試 。

處理規則有限 (Processing Rules Are Limited)

Yes — 150 is the max…can we lower it to zero?

是的-最大值為150…我們可以將其降低為零嗎?

Image for post

Keep in mind that you will only see this message when you try to save. The page will allow you to add more than 150, but it won’t actually save.

請記住,您嘗試保存時只會看到此消息。 該頁面將允許您添加150多個,但實際上不會保存。

文檔問題 (Documentation Is An Issue)

Keeping track of Adobe eVars, Props, Success Events, and their corresponding Processing Rules can only be done manually. There is no automated solution for extracting variable transformations from Processing Rules. This is part of the reason why tracing issues involving Processing Rules is more difficult.

跟蹤Adobe eVar,道具,成功事件及其相應的處理規則只能手動完成。 沒有從“處理規則”中提取變量轉換的自動化解決方案。 這是跟蹤涉及處理規則的問題更加困難的部分原因。

測試處理規則很慢 (Testing Processing Rules Is Slow)

Testing Processing Rules requires patience since there is no real-time Processing Rules testing feature. For example, if you created a new rule for an eVar and wanted to validate the rule by checking the data, you would have to wait up to 90 minutes for the eVar data to get processed and become available in Analysis Workspace or Reports and Analytics.

由于沒有實時的處理規則測試功能,因此測試處理規則需要耐心。 例如,如果您為eVar創建了新規則,并想通過檢查數據來驗證規則,則您可能需要等待90分鐘才能處理eVar數據并使其在Analysis Workspace或Reports and Analytics中可用。

As a workaround sometimes I will copy the data to a prop since props are available in real-time reporting, which I can validate immediately without waiting for the eVar.

作為一種解決方法,有時我會將數據復制到道具,因為道具可以在實時報告中使用,我可以立即進行驗證,而無需等待eVar。

You might think “This guy really hates processing rules!”, and the truth is that I don’t hate them, I just find that using them is not worth the hassle. However, there are perfectly valid reasons to use them — for instance, if you have no choice (Adobe Heartbeat) or if you need to put in a quick patch.

您可能會認為“這個家伙真的很討厭處理規則!”,事實是我不討厭它們,我只是發現使用它們不值得麻煩。 但是,有完全正當的理由使用它們-例如,如果您別無選擇(Adobe Heartbeat)或需要快速添加補丁。

Now let’s hear from you — what’s your experience using Adobe Analytics Processing Rules?

現在,讓我們聽聽您的聲音-使用Adobe Analytics處理規則有什么經驗?

Originally published at https://blog.analystadmin.com

最初發布在 https://blog.analystadmin.com

翻譯自: https://medium.com/@analystadmin/lets-set-some-rules-no-adobe-analytics-processing-rules-6116523db589

adobe 書簽怎么設置

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/391154.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/391154.shtml
英文地址,請注明出處:http://en.pswp.cn/news/391154.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

詳解linux下安裝python3環境

1、下載python3.5源碼包首先去python官網下載python3的源碼包,網址:https://www.python.org/ 進去之后點擊導航欄的Downloads,也可以鼠標放到Downloads上彈出菜單選擇Source code,表示源碼包,這里選擇最新版本3.5.2&am…

詳解spl_autoload_register()函數

http://blog.csdn.net/panpan639944806/article/details/23192267 轉載于:https://www.cnblogs.com/maidongdong/p/7647163.html

上海區塊鏈會議演講ppt_所以您想參加會議演講嗎? 這是我的建議。

上海區塊鏈會議演講pptYou’ve attended a few conferences, watched a lot of presentations, and decided it’s time to give a talk of your own! As someone who has both given talks at conferences, and sat on the proposal review board for others, I’m here to te…

重學TCP協議(8) TCP的11種狀態

TCP的11種狀態 為了邏輯更加清晰,假設主動打開連接和關閉連接皆為客戶端,被動打開連接和關閉連接皆為服務端 客戶端獨有的:(1)SYN_SENT (2)FIN_WAIT1 (3)FIN_WAIT2 &…

肯尼亞第三方支付_肯尼亞的COVID-19病例正在Swift增加,我們不知道為什么。

肯尼亞第三方支付COVID-19 cases in Kenya are accelerating rapidly. New cases have increased 300% month-over-month since April of this year while global and regional media have reported on the economic toll of stringent lock-down measures and heavy-handed go…

JVM命令

1、jps 查看所有虛擬機進程 -v 虛擬機啟動時JVM參數 -l 執行主類全名 2、jstat 顯示本地或遠程類裝載、內存、垃圾回收、JIT編譯等運行數據(性能問題定位工具首選) 格式:jstat [-option] vmid ms count (示例&a…

Java 集合 List Arrays.asList

2019獨角獸企業重金招聘Python工程師標準>>> 參考鏈接:阿里巴巴Java開發手冊終極版v1.3.0 【強制】使用工具類 Arrays.asList()把數組轉換成集合時,不能使用其修改集合相關的方 法,它的 add/remove/clear 方法會拋出 UnsupportedO…

重學TCP協議(9) 半連接隊列、全連接隊列

1. 半連接隊列、全連接隊列基本概念 三次握手中,在第一步server收到client的syn后,把相關信息放到半連接隊列中,同時回復synack給client(第二步),同時開啟一個定時器,如果超時還未收到 ACK 會進…

分類預測回歸預測_我們應該如何匯總分類預測?

分類預測回歸預測If you are reading this, then you probably tried to predict who will survive the Titanic shipwreck. This Kaggle competition is a canonical example of machine learning, and a right of passage for any aspiring data scientist. What if instead …

【CZY選講·Yjq的棺材】

題目描述? Yjq想要將一個長為寬為的矩形棺材(棺材表面絕對光滑,所以棺材可以任意的滑動)拖過一個L型墓道。? 如圖所示,L型墓道兩個走廊的寬度分別是和,呈90,并且走廊的長度遠大于。? 現在Hja想知道對于給…

“機器換人”之潮涌向珠三角,藍領工人將何去何從

企業表示很無奈,由于生產需要,并非刻意換人。 隨著傳統產業向更加現代化、自動化的新產業轉型,“機器換人”似乎是歷史上不可逆轉的潮流。 據報道,珠三角經濟圈所在的廣東省要從傳統的制造大省向制造強省轉變,企業轉型…

slack通知本地服務器_通過構建自己的Slack App學習無服務器

slack通知本地服務器Serverless architecture is the industrys latest buzzword and many of the largest tech companies have begun to embrace it. 無服務器架構是業界最新的流行語,許多大型科技公司已開始采用它。 In this article, well learn what it is an…

深入理解InnoDB(6)—獨立表空間

InnoDB的表空間 表空間可以看做是InnoDB存儲引擎邏輯結構的最高層 ,所有的數據都是存放在表空間中。 1. Extent 對于16KB的頁來說,連續的64個頁就是一個區,也就是說一個區默認占用1MB空間大小。 每256個區被劃分成一組,第一組的前3個頁面是…

神經網絡推理_分析神經網絡推理性能的新工具

神經網絡推理Measuring the inference time of a trained deep neural model on different hardware devices is a critical task when making deployment decisions. Should you deploy your inference on 8 Nvidia V100s, on 12 P100s, or perhaps you can use 64 CPU cores?…

Eclipse斷點調試

1.1 Eclipse斷點調試概述Eclipse的斷點調試可以查看程序的執行流程和解決程序中的bug1.2 Eclipse斷點調試常用操作:A:什么是斷點:就是一個標記,從哪里開始。B:如何設置斷點:你想看哪里的程序,你就在那個有效程序的左邊雙擊即可。C…

react部署在node_如何在沒有命令行的情況下在3分鐘內將React + Node應用程序部署到Heroku

react部署在nodeIn this tutorial we will be doing a basic React Node app deploy to Heroku. 在本教程中,我們將進行基本的React Node應用程序部署到Heroku。 There are a lot of tutorials that do this only using the command line, so to change things u…

深入理解InnoDB(7)—系統表空間

系統表空間 可以看到,系統表空間和獨立表空間的前三個頁面(頁號分別為0、1、2,類型分別是FSP_HDR、IBUF_BITMAP、INODE)的類型是一致的,只是頁號為3~7的頁面是系統表空間特有的 頁號3 SYS: Insert Buffer …

CodeForces - 869B The Eternal Immortality

題意&#xff1a;已知a,b&#xff0c;求的最后一位。 分析&#xff1a; 1、若b-a>5&#xff0c;則尾數一定為0&#xff0c;因為連續5個數的尾數要么同時包括一個5和一個偶數&#xff0c;要么包括一個0。 2、若b-a<5&#xff0c;直接暴力求即可。 #include<cstdio>…

如何在24行JavaScript中實現Redux

90% convention, 10% library. 90&#xff05;的慣例&#xff0c;10&#xff05;的圖書館。 Redux is among the most important JavaScript libraries ever created. Inspired by prior art like Flux and Elm, Redux put JavaScript functional programming on the map by i…

卡方檢驗 原理_什么是卡方檢驗及其工作原理?

卡方檢驗 原理As a data science engineer, it’s imperative that the sample data set which you pick from the data is reliable, clean, and well tested for its usability in machine learning model building.作為數據科學工程師&#xff0c;當務之急是從數據中挑選出的…