大omega記號
Similar to big O notation, big Omega(Ω) function is used in computer science to describe the performance or complexity of an algorithm.
與大O表示法相似,大Omega(Ω)函數在計算機科學中用于描述算法的性能或復雜性。
If a running time is Ω(f(n)), then for large enough n, the running time is at least k?f(n) for some constant k. Here’s how to think of a running time that is Ω(f(n)):
如果運行時間為Ω(f(n)),則對于足夠大的n,對于某個常數k,運行時間至少為k?f(n)。 這是運行時間為Ω(f(n))的思考方式:
We say that the running time is “big-Ω of f(n).” We use big-Ω notation for asymptotic lower bounds, since it bounds the growth of the running time from below for large enough input sizes.
我們說運行時間是“ f(n)的大Ω”。 我們將big-Ω表示法用于漸近下界 ,因為對于足夠大的輸入大小,它從下面限制了運行時間的增長。
大O和大Ω之間的差異 (Difference between Big O and Big Ω)
The difference between Big O notation and Big Ω notation is that Big O is used to describe the worst case running time for an algorithm. But, Big Ω notation, on the other hand, is used to describe the best case running time for a given algorithm.
Big O表示法和BigΩ表示法之間的區別在于,Big O用于描述算法的最壞情況運行時間。 但是,另一方面,BigΩ表示法用于描述給定算法的最佳情況下運行時間。
更多信息: (More Information:)
Big-Ω (Big-Omega) notation
大歐姆(Big-Omega)表示法
翻譯自: https://www.freecodecamp.org/news/big-omega-notation/
大omega記號