python邊玩邊學_邊聽邊學數據科學

python邊玩邊學

Podcasts are a fun way to learn new stuff about the topics you like. Podcast hosts have to find a way to explain complex ideas in simple terms because no one would understand them otherwise 🙂 In this article I present a few episodes to get you going.

播客是一種學習有趣主題的有趣方法。 播客主持人必須找到一種用簡單的術語解釋復雜想法的方法,因為沒人會以其他方式理解它們。🙂在本文中,我將介紹一些情節以助您一臂之力。

In case you’ve missed my previous article about podcasts:

如果您錯過了我以前有關播客的文章:

你應該獲得博士學位嗎 通過部分導數 (Should You Get a Ph.D. by Partially Derivative)

Image for post
Partially Derivative Logo from TwitterTwitter的部分衍生徽標

Partially Derivative is hosted by data science super geeks. They talk about the everyday data of the world around us.

數據科學超級極客主持了Partially Derivative。 他們談論我們周圍世界的日常數據。

This episode may be interesting for students who are thinking about pursuing a Ph.D. In this episode, Chris talks about getting a Ph.D. from his personal perspective. He talks about how he wasn’t interested in math when he was young but was more into history. After college, he had enough of school and didn’t intend to pursue a Ph.D. He sent an application to UC Davis and was presented with a challenge. Enjoy listening to his adventure.

對于想攻讀博士學位的學生來說, 這一插曲可能會很有趣。 在這一集中,克里斯談論了獲得博士學位的問題。 從他個人的角度來看。 他談到了他年輕時對數學不感興趣,但對歷史卻更加感興趣。 大學畢業后,他受夠了學業,不打算攻讀博士學位。 他向加州大學戴維斯分校發送了申請,但面臨挑戰。 喜歡聽他的冒險。

Tim, a two time Ph.D. dropout and a data scientist living in North Carolina, has a website dedicated to this topic: SHOULD I GET A PH.D.?

蒂姆(Tim),有兩次博士學位。 輟學和居住在北卡羅來納州的數據科學家,有一個專門討論這個主題的網站: 我應該獲得博士學位嗎?

Let the adventure begin…

讓冒險開始……

線性引數的核技巧和支持向量機 (The Kernel Trick and Support Vector Machines by Linear Digressions)

Image for post
SoundCloudSoundCloud的 Linear Digressions徽標

Katie and Ben explore machine learning and data science through interesting (and often very unusual) applications.

凱蒂(Katie)和本(Ben)通過有趣的(通常是非常不尋常的)應用程序探索機器學習和數據科學。

In this episode, Katie and Ben explain what is the kernel trick in Support Vector Machines (SVM). I really like the simple explanation of heavy machinery behind SVM. Don’t know what maximum margins classifiers are? Then listen first to supporting episode Maximal Margin Classifiers.

在這一集中,Katie和Ben解釋了支持向量機(SVM)中的內核技巧是什么。 我真的很喜歡SVM背后有關重型機械的簡單說明。 不知道什么是最大利潤率分類器? 然后,首先收聽輔助劇集《 最大邊際分類器》 。

A Maximum Margin Classifier tries to find a line (a decision boundary) between the left and right side so that it maximizes the margin. The line is called a hyperplane because usually there are more 2 dimensions involved. The decision boundary is between support vectors.

最大保證金分類器嘗試在左側和右側之間找到一條線(決策邊界),以使保證金最大化。 該線稱為超平面,因為通常涉及更多的二維。 決策邊界在支持向量之間。

Image for post
Binary classification problem with support vectors
支持向量的二進制分類問題

什么是內核技巧? (What is the kernel trick?)

When you have 3 points in a 2-dimensional space, you can arrange points in a way, that they cannot be separated by a line. You can always separate them by putting them in 3 dimensions. One way to introduce a new dimension is to calculate the distance from the origin:

當您在二維空間中有3個點時,可以按某種方式排列點,使它們不能用線隔開。 您始終可以通過將它們分成3維來分離它們。 引入新尺寸的一種方法是計算距原點的距離:

z = x^2 + y^2

This will push points farther from the origin more than the ones closer to the origin. Let’s look at a video below. This also makes a linear classifier non-linear, because it maps the boundary to less dimensional space.

這將使離原點更遠的點比靠近原點的點更多。 讓我們看下面的視頻。 這也使線性分類器成為非線性,因為它將邊界映射到較小的空間。

Image for post
SVM with polynomial kernel visualization from giphy
具有giphy的多項式內核可視化的SVM

When there are more dimensions than the samples, we can always separate the points with a hyperplane — this is the main idea behind SVM. The polynomial kernel is one of the commonly used kernels with SVM (the most common is Radial basis function). The 2nd-degree polynomial kernel looks for all cross-terms between two features — useful when we would like to model interactions.

當尺寸大于樣本時,我們總是可以使用超平面將點分開-這是SVM的主要思想。 多項式內核是支持SVM的常用內核之一(最常見的是Radial基函數)。 2階多項式內核會尋找兩個特征之間的所有交叉項,這在我們希望對交互進行建模時很有用。

What is the kernel tricks? Popcorn that joined the army and they’ve made him a kernel

什么是內核技巧? 爆米花加入了軍隊,他們使他成為內核

懷疑論者的AI決策 (AI Decision-Making by Data Skeptic)

Image for post
https://dataskeptic.com/https://dataskeptic.com/的數據懷疑論者徽標

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics and machine learning.

數據懷疑播客提供有關數據科學,統計和機器學習相關主題的訪談和討論。

In this episode, Dongho Kim discusses how he and his team at Prowler have been building a platform for autonomous decision making based on probabilistic modeling, reinforcement learning, and game theory. The aim is so that an AI system could make decisions just as good as humans can.

在本集中 ,Dongho Kim討論了他和他在Prowler的團隊如何建立基于概率建模,強化學習和博弈論的自主決策平臺。 目的是使AI系統能夠做出與人類一樣好的決策。

Rather than deep learning, we are most interested in Bayesian processes

而不是深度學習,我們對貝葉斯過程最感興趣

你走之前 (Before you go)

Image for post
giphygiphy

Follow me on Twitter and join me on my creative journey. I mostly tweet about Data Science.

在Twitter上關注我,并加入我的創意之旅。 我主要在推特上談論數據科學。

These are a few links that might interest you:

這些鏈接可能會讓您感興趣:

- Your First Machine Learning Model in the Cloud- AI for Healthcare- Parallels Desktop 50% off- School of Autonomous Systems- Data Science Nanodegree Program- 5 lesser-known pandas tricks- How NOT to write pandas code

翻譯自: https://towardsdatascience.com/learn-data-science-while-listening-a555811b0950

python邊玩邊學

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/390682.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/390682.shtml
英文地址,請注明出處:http://en.pswp.cn/news/390682.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

react css多個變量_如何使用CSS變量和React上下文創建主題引擎

react css多個變量CSS variables are really cool. You can use them for a lot of things, like applying themes in your application with ease. CSS變量真的很棒。 您可以將它們用于很多事情,例如輕松地在應用程序中應用主題。 In this tutorial Ill show you …

vue 自定義 移動端篩選條件

1.創建組件 components/FilterBar/FilterBar.vue <template><div class"filterbar" :style"{top: top px}"><div class"container"><div class"row"><divclass"col":class"{selected: ind…

PSP

姓名&#xff1a;袁亞琴 日期&#xff1a;11月27日 教師&#xff1a;王建民 課程&#xff1a;PSP 項目計劃日志&#xff1a; PSP Planning . Estimate Development . Analysis . Design Spec . Design Review . …

如何在Windows中打開和使用命令提示符

入門 (Getting started) Windows, MacOS and Linux have command line interfaces. Windows’ default command line is the command prompt. The command prompt allows users to use their computer without pointing and clicking with a mouse. Windows&#xff0c;MacOS和…

ACM-ICPC北京賽區2017網絡同步賽H

http://hihocoder.com/contest/icpcbeijing2017/problem/8 預處理暴力枚舉修改的點 #include <bits/stdc.h> using namespace std; const int maxn 159; const int inf 0x3f3f3f3f; int a[maxn][maxn]; int colsum[maxn][maxn]; int rowsum[maxn][maxn]; int dp[maxn];…

PPPOE撥號上網流程及密碼竊取具體實現

樓主學生黨一枚&#xff0c;最近研究netkeeper有些許心得。 關于netkeeper是調用windows的rasdial來進行上網的東西&#xff0c;網上已經有一大堆&#xff0c;我就不贅述了。 本文主要講解rasdial的部分核心過程&#xff0c;以及我們可以利用它來干些什么。 netkeeper中rasdial…

leetcode 160. 相交鏈表(雙指針)

給你兩個單鏈表的頭節點 headA 和 headB &#xff0c;請你找出并返回兩個單鏈表相交的起始節點。如果兩個鏈表沒有交點&#xff0c;返回 null 。 圖示兩個鏈表在節點 c1 開始相交&#xff1a; 題目數據 保證 整個鏈式結構中不存在環。 注意&#xff0c;函數返回結果后&#…

android開發入門_Android開發入門

android開發入門Android is an open source, Linux-based mobile operating system. Android was developed by the Open Handset Alliance, which was lead by Google and featured contributions from many other companies.Android是基于Linux的開放源代碼移動操作系統。 An…

新購阿里云服務器ECS創建之后無法ssh連接的問題處理

作者&#xff1a;13 GitHub&#xff1a;https://github.com/ZHENFENG13 版權聲明&#xff1a;本文為原創文章&#xff0c;未經允許不得轉載。 問題描述 由于原服務器將要到期&#xff0c;因此趁著阿里云搞促銷活動重新購買了一臺ECS服務器&#xff0c;但是在初始化并啟動后卻無…

數據下發非標準用戶權限測試

與同事一起溝通了下MDM的Oracle權限部分: create user cx default tablespace cwbaseoe73 identified by Test6530 grant select,update,delete,insert on lcoe739999.lsbzdw to cx grant create table to cx alter user cx quota unlimited on cwbaseoe73 grant create sessio…

leetcode 474. 一和零(dp)

給你一個二進制字符串數組 strs 和兩個整數 m 和 n 。 請你找出并返回 strs 的最大子集的大小&#xff0c;該子集中 最多 有 m 個 0 和 n 個 1 。 如果 x 的所有元素也是 y 的元素&#xff0c;集合 x 是集合 y 的 子集 。 示例 1&#xff1a; 輸入&#xff1a;strs [“10”…

邊緣計算 ai_在邊緣探索AI!

邊緣計算 ai介紹 (Introduction) What is Edge (or Fog) Computing?什么是邊緣(或霧)計算&#xff1f; Gartner defines edge computing as: “a part of a distributed computing topology in which information processing is located close to the edge — where things a…

JavaScript中的全局變量介紹

Global variables are declared outside of a function for accessibility throughout the program, while local variables are stored within a function using var for use only within that function’s scope. If you declare a variable without using var, even if it’…

初識spring-boot

使用Spring或者SpringMVC的話依然有許多東西需要我們進行配置&#xff0c;這樣不僅徒增工作量而且在跨平臺部署時容易出問題。 使用Spring Boot可以讓我們快速創建一個基于Spring的項目&#xff0c;而讓這個Spring項目跑起來我們只需要很少的配置就可以了。Spring Boot主要有如…

leetcode 879. 盈利計劃(dp)

這是我參與更文挑戰的第9天 &#xff0c;活動詳情查看更文挑戰 題目 集團里有 n 名員工&#xff0c;他們可以完成各種各樣的工作創造利潤。 第 i 種工作會產生 profit[i] 的利潤&#xff0c;它要求 group[i] 名成員共同參與。如果成員參與了其中一項工作&#xff0c;就不能…

區塊鏈101:區塊鏈的應用和用例是什么?

區塊鏈技術是一場記錄系統的革命。 比特幣是歷史上第一個永久的、分散的、全球性的、無信任的記錄分類帳。自其發明以來&#xff0c;世界各地各行各業的企業家都開始明白這一發展的意義。 區塊鏈技術的本質讓人聯想到瘋狂&#xff0c;因為這個想法現在可以應用到任何值得信賴的…

java請求接口示例_用示例解釋Java接口

java請求接口示例介面 (Interfaces) Interface in Java is a bit like the Class, but with a significant difference: an interface can only have method signatures, fields and default methods. Since Java 8, you can also create default methods. In the next block y…

如何建立搜索引擎_如何建立搜尋引擎

如何建立搜索引擎This article outlines one of the most important search algorithms used today and demonstrates how to implement it in Python in just a few lines of code.本文概述了當今使用的最重要的搜索算法之一&#xff0c;并演示了如何僅用幾行代碼就可以在Pyth…

用Docker自動構建紙殼CMS

紙殼CMS可以運行在Docker上&#xff0c;接下來看看如何自動構建紙殼CMS的Docker Image。我們希望的是在代碼提交到GitHub以后&#xff0c;容器鏡像服務可以自動構建Docker Image&#xff0c;構建好以后&#xff0c;就可以直接拿這個Docker Image來運行了。 Dockerfile 最重要的…

Linux學習筆記15—RPM包的安裝OR源碼包的安裝

RPM安裝命令1、 安裝一個rpm包rpm –ivh 包名“-i” : 安裝的意思“-v” : 可視化“-h” : 顯示安裝進度另外在安裝一個rpm包時常用的附帶參數有&#xff1a;--force : 強制安裝&#xff0c;即使覆蓋屬于其他包的文件也要安裝--nodeps : 當要安裝的rpm包依賴其他包時&#xff0…