機器學習模型部署
每月版 (MONTHLY EDITION)
Often, the last step of a Data Science task is deployment. Let’s say you’re working at a big corporation. You’re building a project for a customer of the corporation and you’ve created a model that performs well. Unfortunately, the model you’ve created will only be able to be used by the customer if the customer has the code you’ve written, the environment you’ve created, and the machines you’ve been working on.
通常,數據科學任務的最后一步是部署。 假設您在一家大公司工作。 您正在為公司的客戶構建項目,并且已經創建了一個運行良好的模型。 不幸的是,只有當客戶擁有您編寫的代碼,所創建的環境以及正在使用的機器時,客戶才能使用您創建的模型。
HOWEVER, if you deploy your model into production, the only thing the customer will need is…the product. In other words, a machine learning model will provide real value when it is available to the users that it has been created for. Your model is only a proof of concept (PoC) until it is put into production, then it becomes a deliverable.
但是,如果您將模型部署到生產中,那么客戶唯一需要的就是產品。 換句話說, 當機器學習模型可供創建的用戶使用時,它將提供真正的價值 。 您的模型只是概念證明(PoC),直到投入生產,然后才能交付使用。
There are many ways to deploy a machine learning model. The basic idea of deployment involves allowing an end-user to utilize your model. The product needs to be customized to the end user’s needs since they will be the ones who will use it. Deployment is a crucial step because it allows others to use the machine learning model that was built.
有很多方法可以部署機器學習模型。 部署的基本思想涉及允許最終用戶使用您的模型 。 產品需要根據最終用戶的需求進行定制,因為他們將是使用產品的人。 部署是至關重要的一步,因為它允許其他人使用已構建的機器學習模型。
Choosing how to deploy your model into production can be difficult and you’ll need to evaluate what the end-users want and need. Perhaps your model needs to work in real time. Maybe it needs to be used to make many predictions at a time. You might need a particular architecture, etc. There can be many many requirements for a product, and more importantly, it will need to work on all use-cases, which is why debugging your model is essential.
選擇如何將模型部署到生產環境可能很困難,您需要評估最終用戶的需求。 也許您的模型需要實時工作。 也許需要一次使用它進行許多預測。 您可能需要特定的體系結構等。產品可能有很多需求,更重要的是,它將需要在所有用例上工作,這就是調試模型至關重要的原因。
Michael Armanious, Editor at Towards Data Science.
《邁向數據科學》(Towards Data Science)編輯Michael Armanious 。
為什么我們使用Go而不是Python部署機器學習模型 (Why we deploy machine learning models with Go — not Python)
by Caleb Kaiser — 5 min read
Caleb Kaiser撰寫的文章 -5分鐘閱讀
There’s more to production machine learning than Python scripts
除了Python腳本外,生產機器學習還有更多
使用Python開發NLP模型并使用Flask逐步部署它 (Develop a NLP Model in Python & Deploy It with Flask, Step by Step)
by Susan Li — 6 min read
Susan Li撰寫-6分鐘閱讀
Flask API, Document Classification, Spam Filter
Flask API,文檔分類,垃圾郵件過濾器
部署ML模型有兩種非常不同的方式,這兩種 (There are two very different ways to deploy ML models, here’s both)
by Tom Grek — 9 min read
湯姆·格里克 ( Tom Grek) — 9分鐘閱讀
If an ML model makes a prediction in Jupyter, is anyone around to hear it?
如果ML模型在Jupyter中進行預測,周圍會有人聽到嗎?
使用Streamlit快速構建和部署儀表板 (Quickly Build and Deploy a Dashboard with Streamlit)
by Maarten Grootendorst — 7 min read
由Maarten Grootendorst撰寫 -7分鐘閱讀
Deploying your Streamlit application to Heroku to showcase your Data Solution
將您的Streamlit應用程序部署到Heroku以展示您的數據解決方案
構建和部署您的第一個機器學習Web應用程序 (Build and deploy your first machine learning web app)
by Moez Ali — 11 min read
通過Moez Ali —閱讀11分鐘
A beginner’s guide to train and deploy machine learning pipelines in Python using PyCaret
使用PyCaret在Python中訓練和部署機器學習管道的初學者指南
構建Web應用程序以部署機器學習模型 (Building a Web Application to Deploy Machine Learning Models)
by Joseph Lee Wei En — 19 min read
作者: 李維恩(Joseph Lee Wei En) — 19分鐘閱讀
So we’ve built our ML model — now what? How to get out of Jupyter Notebook and into Web Apps with Flask!
因此,我們建立了ML模型-現在呢? 如何使用Flask從Jupyter Notebook進入Web應用程序!
如何使用Angular部署TensorFlow Web應用程序 (How to Use Angular To Deploy TensorFlow Web Apps)
by James Briggs
詹姆斯·布里格斯 ( James Briggs)
Using Python-built models in Angular-built web apps
在Angular構建的Web應用程序中使用Python構建的模型
讓我們部署機器學習模型 (Let’s Deploy a Machine Learning Model)
by Dario Rade?i? — 5 min read
達里奧·拉德奇(DarioRade?i?)撰寫 -5分鐘閱讀
How to use machine learning models in production
如何在生產中使用機器學習模型
新影片 (New videos)
Determining Which ML Technologies To Act On | T. Pillai, S. Gandrabur, O. Shai & T. Poutanen
確定要對哪種ML技術采取行動? T. Pillai,S。Gandrabur,O。Shai和T. Poutanen
Panel: Creative Ways to Collect & Use Data for AI | H. Ngo, S. Sun, H. Kontozopoulos, and R. Tabrizi
小組:收集和使用人工智能數據的創新方法 H. Ngo,S。Sun,H。Kontozopoulos和R.Tabrizi
新播客 (New podcasts)
Jakob Foerster — Multi-agent reinforcement learning and the future of AI
Jakob Foerster —多主體強化學習和人工智能的未來
Kenny Ning — Is data science merging with data engineering?
肯尼·寧(Kenny Ning)-數據科學是否與數據工程融合?
Ihab Ilyas — Data cleaning is finally being automated
Ihab Ilyas —數據清理最終實現了自動化
Goku Mohandas — Industry research and how to show off your projects
Goku Mohandas —行業研究以及如何炫耀您的項目
We also thank all the great new writers who joined us recently Jodie Zhou, Kamila Hamalcikova, Kimoon Kim, Ron Sielinski, Nils Flaschel, Matt, Ewan Davies, Dani Solis, Boon Yang, Steve Leven, Ph.D, Farhan Rahman, Stefano Bosisio, Victor Mariano Leite, Robin White, Andreas Kanz, Grzegorz Meller, Pavan Kumar Boinapalli, Alexey Khrustalev, Pratick Roy, Jason O. Jensen, Drew Seewald, José Herazo and many others. We invite you to take a look at their profiles and check out their work.
我們還要感謝所有最近加入我們的偉大新作家,包括周 祖迪 , 卡米拉·哈馬爾奇科娃 , 金穆恩·金 , 羅恩·西林斯基 , 尼爾斯·弗拉舍爾 , 馬特 , 伊萬·戴維斯 , 丹妮·索利斯 , 楊恩 , 史蒂夫·萊文,博士 , 法漢·拉曼 , 史蒂芬諾·波西西奧 , Victor Mariano Leite , Robin White , Andreas Kanz , Grzegorz Meller , Pavan Kumar Boinapalli , Alexey Khrustalev , Pratick Roy , Jason O.Jensen , Drew Seewald , JoséHerazo等。 我們邀請您查看他們的個人資料并查看他們的工作。
翻譯自: https://towardsdatascience.com/september-edition-deploying-machine-learning-models-309518cca140
機器學習模型部署
本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。 如若轉載,請注明出處:http://www.pswp.cn/news/390000.shtml 繁體地址,請注明出處:http://hk.pswp.cn/news/390000.shtml 英文地址,請注明出處:http://en.pswp.cn/news/390000.shtml
如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!