大數據ab 測試_在真實數據上進行AB測試應用程序

大數據ab 測試

Hello Everyone!

大家好!

I am back with another article about Data Science. In this article, I will write about what is A-B testing and how to use it on real life data-set to compare two advertisement methods.

我回來了另一篇有關數據科學的文章。 在本文中,我將介紹什么是AB測試以及如何在現實生活的數據集上使用它來比較兩種廣告方法。

What is A-B Testing and where do we use it?

什么是AB測試,我們在哪里使用它?

A/B testing is a method used to compare two versions or methods of something. It is a very popular method used by from big companies like Facebook, Google, Amazon, Ali Express etc. to many other companies. With this method, we can decide on, for example, the following:

A / B測試是一種用于比較某事物的兩個版本或方法的方法。 從Facebook,Google,Amazon,Ali Express等大公司到許多其他公司,這是一種非常流行的方法。 使用這種方法,我們可以決定例如以下內容:

  • Button shape, size or color,

    按鈕的形狀,大小或顏色
  • Which advertisement strategy is better,

    哪種廣告策略更好,
  • Which email format is better,

    哪種電子郵件格式更好,
  • Which website design is better,

    哪個網站設計更好,
  • Which headline is better etc.

    哪個標題更好,等等。

So let us apply this testing method on a real life situation.

因此,讓我們將這種測試方法應用于現實生活中。

案例分析: (Case Study:)

A big social platform recently introduced an advertisement method with a new bidding type “average bidding”, as an alternative to its existing advertisement method with bidding type called “maximum bidding”. One of their clients has decided to test this new feature and wants to conduct an A/B test to understand if average bidding brings more conversions than maximum bidding.

大型社交平臺最近推出了一種具有新出價類型“平均出價”的廣告方法,以替代其現有的具有出價類型的廣告方法“最高出價”。 他們的一位客戶決定測試此新功能,并希望進行A / B測試,以了解平均出價帶來的轉化次數是否大于最高出價。

In this A/B test, the client randomly splits its audience into two equally sized groups, e.g. the test and the control group. The existing ad campaign with “maximum bidding” is served to “control group” and the new campaign with “average bidding” is served to the “test group”. The A/B test has run for 1 month and now the client wants to analyze and present the results of this A/B test.

在此A / B測試中,客戶將受眾隨機分為兩個大小相等的組,例如測試組和對照組。 現有的具有“最高出價”的廣告系列將投放到“對照組”,而具有“平均出價”的新廣告系列將投放到“測試組”。 A / B測試已經進行了1個月,現在客戶希望分析并展示此A / B測試的結果。

To understand the data variables better, we need to understand the customer journey for the campaign. The customer journey for this campaign is as in the order below:

為了更好地了解數據變量,我們需要了解廣告系列的客戶旅程。 此廣告系列的客戶流程如下:

1. User sees an ad (Impression)

1.用戶看到一個廣告(展示)

2. User clicks on the website link on the ad (Website Click)

2.用戶點擊廣告上的網站鏈接(網站點擊)

3. User makes a search on the website (Search)

3.用戶在網站上進行搜索(搜索)

4. User views details of a product (View Content)

4.用戶查看產品的詳細信息(查看內容)

5. User adds the product to the cart (Add to Cart)

5.用戶將產品添加到購物車(添加到購物車)

6. User purchases the product (Purchase)

6.用戶購買產品(購買)

數據理解 (Data Understanding)

The variables are the same in both groups. There are totally 10 variables (10 columns): “Campaign Name”, “Date”, “Spend[USD]”, “# of Impressions (the number of times an ad is displayed)”, “Reach (the number of unique people who saw an ad)”, “# of Website Clicks (the number of clicks on ad links directed to Advertiser’s website)”, “# of Searches”, “# of View Content”, “# of Add to Cart”, “# of Purchase”. There are equal number of observations in both groups (30 rows each).

兩組中的變量相同。 總共有10個變量(10列):“廣告系列名稱”,“日期”,“支出[USD]”,“展示次數(顯示廣告的次數)”,“到達率(唯一身份的人數)誰看到了廣告)”,“網站點擊次數(指向廣告商網站的廣告鏈接的點擊次數)”,“搜索次數”,“查看內容數量”,“添加到購物車的數量”,“#購買”。 兩組中的觀察數相等(每組30行)。

The most important metric for analyzing success for the customer is “# of Purchases”.

分析客戶成功的最重要指標是“購買數量”。

Other metrics that are widely used and compared are CTR (Click Through rate), CPA (Cost per Action), CR (Conversion rate):

廣泛使用和比較的其他指標是CTR(點擊率),CPA(每次操作費用),CR(轉化率):

Click Through Rate: Number of Website Clicks / Number of Impressions

點擊率:網站點擊次數/展示次數

Cost per Action: Spend / Number of Actions

每次操作費用:支出/操作次數

Conversion Rate: Number of Actions / Number of Website Clicks

轉化率:操作數/網站點擊數

Action: Can be any conversion event, such as Search, View Content, Add to Cart and Purchase.

行動:可以是任何轉化事件,例如搜索,查看內容,添加到購物車和購買。

數據預處理 (Data Pre-processing)

When analyzing the data-set, it is found that:

分析數據集時,發現:

Control group has one NA row. This row has only Date and Spend values, other values are missing:

對照組有一個NA行。 該行只有日期和支出值,其他值缺失:

Image for post

The mean values of these variables are assigned to their own NA values respectively:

這些變量的平均值分別分配給它們自己的NA值:

Image for post

It is found that there is no outlier in the “# of Purchase” variable of the control group. Test group does not have any missing values. However, it has one outlier in # of Purchases:

發現對照組的“購買數量”變量中沒有異常值。 測試組沒有任何缺失值。 但是,它在購買數量中有一個異常值:

Image for post
Figure-1: Box-plot of “# of Purchase” variable of the test group
圖1:測試組“購買數量”變量的箱形圖

This value is repressed by assigning the upper bound value to it. Upper bound value is found by Box-plot method:

通過為其指定上限值來抑制此值。 上限值通過Box-plot方法找到:

Image for post

Now we have no outliers in test group as well. The data-set is ready for hypothesis testing.

現在我們在測試組中也沒有異常值。 數據集已準備好進行假設檢驗。

· Group A: Existing method: Maximum Bidding — Control Group

·A組:現有方法:最高出價-對照組

· Group B: New method: Average Bidding — Test Group

·B組:新方法:平均出價-測試組

假設檢驗 (Hypothesis Testing)

Control Group has 507 purchases in average and test group has 481 purchases in average, meaning Control group has more purchases in average. However, we need to check if this is a significant difference. For this, we need to make hypothesis test. As we have independent and paired sample groups, we can use T-testing for Hypothesis test. A t-test is a statistic method used to determine if there is a significant difference between the means of two groups based on a sample of data. The common assumptions made when doing a t-test include normality of data distribution and equality of variance in standard deviation.

對照組平均有507筆采購,測試組平均有481筆采購,這意味著對照組平均有更多的采購。 但是,我們需要檢查這是否有顯著差異。 為此,我們需要進行假設檢驗。 由于我們有獨立且成對的樣本組,因此我們可以將T檢驗用于假設檢驗。 t檢驗是一種統計方法,用于根據數據樣本確定兩組平均值之間是否存在顯著差異。 進行t檢驗時,通常的假設包括數據分布的正態性和標準偏差的方差相等。

1. Normality of data distribution

1.數據分發的常態

2. Equality of variances

2.方差均等

1) Controlling 1st Assumption:

1)控制第一個假設:

Shapiro test is applied for checking the first assumption. The hypothesis is constructed as follows:

Shapiro檢驗用于檢查第一個假設。 假設的構造如下:

H0: The data is normally distributed

H0:數據正態分布

H1: The data is not normally distributed

H1:數據不是正態分布

Image for post

The results of the test are found as follows:

測試結果如下:

· p-value of group A is 0.979 which is >0.05 so we fail to reject H0 meaning that group A is normally distributed.

·組A的p值為0.979,即> 0.05,因此我們無法拒絕H0,這意味著組A是正態分布的。

· p value of group B is 0.776 which is <0.05 so we fail to reject H0 meaning that group B data is normally distributed.

·B組的p值為0.776,該值<0.05,因此我們不能拒絕H0,這意味著B組數據是正態分布的。

As a result of Shapiro test, it is seen that the normality assumption has been satisfied.

作為Shapiro測試的結果,可以看出正態性假設已得到滿足。

2) Controlling 2nd Assumption:

2)控制第二個假設:

Levene test is applied for checking the first assumption. The hypothesis is constructed as follows:

Levene檢驗用于檢驗第一個假設。 假設的構造如下:

H0: The variances are equal(homogeneous)

H0:方差相等(均勻)

H1: The variances are unequal(non-homogeneous)

H1:方差不相等(不均勻)

Image for post

As the p-value has been found as 0.11 which is >0.05, we fail to reject H0 meaning that the variances of both groups are equal variances.

由于發現p值為0.11(大于0.05),我們不能拒絕H0,這意味著兩組的方差是相等的方差。

As the normality and equal variance of distributions assumptions are satisfied, we can use Independent Two-Sample T-Test for testing the hypothesis:

當滿足分布假設的正態性和均方差時,我們可以使用獨立兩次樣本T檢驗來檢驗假設:

對于2-T檢驗,假設如下: (For 2-T test, the hypothesis is as follows:)

H0: There is no statistically significant difference between control and test groups with respect to the average of Number of Purchases ( μ1=μ2 )

H0:對照組和測試組之間的平均購買次數(μ1=μ2)沒有統計學上的顯著差異

H1: There is statistically significant differences between control and test groups with respect to the average of Number of Purchases (μ1 ≠ μ2 )

假設1:對照組和測試組之間的平均購買次數(μ1≠μ2)在統計上有顯著差異

Image for post

After tests are applied, the p value resulted in more than 0.05 significance level. Therefore, the result is “fail to reject H0” that is there is no statistically significant difference between control and experiment groups with respect to the average of Number of Purchases (μ1=μ2).

應用測試后,p值導致超過0.05的顯著性水平。 因此,結果是“未能拒絕H0”,相對于平均購買數量(μ1=μ2),對照組和實驗組之間沒有統計學上的顯著差異。

通過假設檢驗分析其他指標: (Analyzing Other Metrics by Hypothesis Testing:)

More metrics have been tested to see if the new method is better or not. The metrics that were analyzed are Click through rate (CTR), CPA (Cost per Action) and Conversion Rate (CR). When comparing rates in two independent groups, independent 2-sample proportion test is used.

已經測試了更多指標,以查看新方法是否更好。 分析的指標為點擊率(CTR),CPA(每次操作費用)和轉化率(CR)。 比較兩個獨立組的比率時,使用獨立的2樣本比例測試。

1) CTR:

1) 點擊率:

CTR= Number of Website Clicks / Number of Impressions

點擊率=網站點擊次數/展示次數

The proportions are calculated for both groups. Control group’s CTR is found as 0.045 and Test group’s CTR is found as 0.044. There is slight difference between two groups’ CTR values and the control group has bigger rate. Let’s see if this difference is statistically significant. The hypothesis is constructed as follows:

計算兩組的比例。 對照組的CTR為0.045,測試組的CTR為0.044。 兩組的CTR值之間存在細微差異,而對照組的CTR值則較大。 讓我們看看這種差異是否具有統計意義。 假設的構造如下:

H0: There is no statistically significant difference between control and test group CTR rates.

H0:對照組和測試組的點擊率之間沒有統計學上的顯著差異。

H1: There is a statistically significant difference between control and test group CTR rates.

假設1 :對照組和測試組的點擊率有統計學差異

Image for post

As a result, the p-value found smaller than 0.05 meaning that we reject the null hypothesis. When bidding methods are examined, there is a statistically significant difference between CTR rates. And this difference is in favor of the control group (current existing “max bidding” method).

結果,發現p值小于0.05,這意味著我們拒絕了原假設。 在檢查出價方法時,點擊率之間在統計上有顯著差異。 這種差異有利于對照組(當前現有的“最高出價”方法)。

2) CPA:

2) 每次轉化費用:

CAP= Spend / Number of Actions = Spend/Number of Purchases

CAP =支出/操作次數=支出/購買次數

Number of actions is taken as the number of the purchases in this calculation.

在此計算中,將操作數作為購買數。

The proportions are calculated for both groups and found as follows:

計算兩組的比例,結果如下:

Control group’s CPA is found as 5, it means that a customer’s one purchase costed us 5 USD in average. Test group’s CPA is found as 5.23, it means that a customer’s one purchase costed us 5.23 USD in average.

對照組的CPA為5,這表示客戶一次購買的平均費用為5美元。 測試組的CPA為5.23,這表示客戶一次購買的平均費用為5.23美元。

The hypothesis is constructed as follows:

假設的構造如下:

H0: There is no statistically significant difference between control and test group CPA rates.

H0:對照組和測試組的CPA率之間沒有統計學上的顯著差異。

H1: There is a statistically significant difference between control and test group CPA rates.

H1 :對照組和測試組的CPA率之間存在統計學差異

Image for post

The p-value has been found smaller than 0.05. We reject H0 meaning that there is statistically meaningful difference between two groups CPA values.

發現p值小于0.05。 我們拒絕H0,這意味著兩組CPA值之間存在統計上有意義的差異。

We can say that the existing method: max bidding is better than the new one as it has cheaper cost per purchase. So still, we cannot say that the new method is better than the existing one. Lastly, CR has been tested.

可以說,現有方法:最高出價比新方法要好,因為它的每次購買費用更便宜。 因此,我們仍然不能說新方法比現有方法更好。 最后,CR已通過測試。

3) CR:

3) CR:

Conversion Rate: Number of Actions / Number of Website Clicks

轉化率:操作數/網站點擊數

For number of actions, 3 different metrics have been analyzed:

對于操作數,已分析了3個不同的指標:

Firstly, the proportions (“# of Purchase”/”# of Website Clicks”) are found as follows:

首先,找到比例(“購買次數” /“網站點擊次數”):

Control CR= 0.098

控制CR = 0.098

Test CR= 0.099

測試CR = 0.099

The hypothesis is constructed as follows:

假設的構造如下:

H0: There is no statistically significant difference between control and test group CR values.

H0:對照組和測試組的CR值之間沒有統計學上的顯著差異。

H1: There is a statistically significant difference between control and test group CR values.

H1 :對照組和測試組的CR值在統計上有顯著差異。

Image for post

As a result, we fail to reject the null hypothesis meaning that there is no statistically significant difference between control and test groups with respect to the first CR.

結果,我們不能拒絕零假設,即相對于第一個CR,對照組和測試組之間沒有統計學上的顯著差異。

Secondly, the proportions (“# of Purchase”/”# of Add to Cart”) are found as follows:

其次,找到比例(“購買數量” /“添加到購物車數量”):

Control CR2= 0.512

控制CR2 = 0.512

Test CR2= 0.588

測試CR2 = 0.588

This result shows that the occurrence number of buying items after they are added into cart is more in test group. Let’s see if this is significant difference.

結果表明,在測試組中,將購買的商品添加到購物車后的出現次數更多。 讓我們看看這是否有顯著差異。

The hypothesis is constructed as follows:

假設的構造如下:

H0: There is no statistically significant difference between control and test group CR2 values.

H0:對照組和測試組的CR2值之間沒有統計學上的顯著差異。

H1: There is a statistically significant difference between control and test group CR2 values.

H1 :對照組和測試組的CR2值在統計上有顯著差異。

Image for post

As a result, p-value has been found lower than< 0.05. We reject H0 meaning that there is statistically meaningful difference between two groups CPA values and the difference is in favor of the new method.

結果,發現p值小于<0.05。 我們拒絕H0意味著兩組CPA值之間在統計上存在有意義的差異,并且該差異有利于新方法。

It is the first result that has ever favored the new method.

這是有史以來使用該新方法的第一個結果。

Let’s check the final CR:

讓我們檢查最終的CR:

Lastly, the proportions (“# of Purchase”/”# of View Content”) are found as: Control CR3= 0.334 and Test CR3= 0.345

最后,比例(“購買數量” /“觀看內容數量”)為:控件CR3 = 0.334和測試CR3 = 0.345

Test group has better rate but let’s see if this is significant by applying Hypothesis testing:

測試組的評分較高,但通過使用假設檢驗來看看這是否有意義:

H0: There is no statistically significant difference between control and test group CR3 values.

H0:對照組和測試組的CR3值之間沒有統計學上的顯著差異。

H1: There is a statistically significant difference between control and test group CR3 values.

H1 :對照組和測試組的CR3值在統計上有顯著差異。

Image for post

As a result, the p-value (0.567) has been found bigger than 0.05. We fail to Reject H0 meaning that there is not statistically meaningful difference between two groups. We cannot conclude anything in here.

結果,發現p值(0.567)大于0.05。 我們無法拒絕H0,這意味著兩組之間在統計上沒有顯著差異。 我們在這里不能得出任何結論。

結果 (Results)

Based on my analysis, I would recommend to client to collect more data for few more months before drawing any conclusions. If there is no chance (no time, no budget etc.), it is not suggested to use the new bidding type (average bidding). Because:

根據我的分析,我建議客戶在得出結論之前再收集幾個月的更多數據。 如果沒有機會(沒有時間,沒有預算等),建議不要使用新的出價類型(平均出價)。 因為:

  • Average spend value of new method is more that the existing one. No need to spend more while there is no significant difference between two models:

    新方法的平均花費價值大于現有方法。 兩種模式之間沒有顯著差異時,無需花費更多:
Image for post
Figure-2: Avg. Spend values of both groups
圖2:平均 兩組的消費額
  • # of purchase is decreasing when using the new method:

    使用新方法時,購買數量正在減少:
Image for post
Figure-3: Avg. # of purchase values of both groups
圖3:平均 兩組的購買價值數量
  • # of clicks is decreasing when using the new method:

    使用新方法時,點擊次數正在減少:
Image for post
Figure-4: Avg. # of clicks of both groups
圖4:平均 兩組的點擊次數

As a result, it doesn’t bring more conversions than existing bidding type (max bidding). I recommend to the client to continue with existing bidding type if a decision must be made now.

因此,它帶來的轉化次數不會超過現有的出價類型(最高出價)。 如果必須立即做出決定,我建議客戶繼續使用現有的出價類型。

In this article, I have given brief information about A/B Testing and where it is used in real life. I have also applied it on a real data-set to compare two advertisement methods. I hope this article will be helpful for you to understand A/B Testing and its applications. You can reach to the full code from my GitHub account:

在本文中,我簡要介紹了A / B測試及其在現實生活中的使用情況。 我還將其應用于實際數據集以比較兩種廣告方法。 希望本文對您了解A / B測試及其應用程序有所幫??助。 您可以從我的GitHub帳戶獲取完整代碼:

https://github.com/bsrymn/AB-Test/blob/master/CaseStudyAB-Test_BusraYaman.ipynb

https://github.com/bsrymn/AB-Test/blob/master/CaseStudyAB-Test_BusraYaman.ipynb

See you in my next articles!!

下篇再見!!

參考資料 (REFERENCES)

  • https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

    https://docs.scipy.org/doc/scipy/reference/generation/scipy.stats.ttest_ind.html

  • Veri Bilimi Okulu (Data Science School) Class Notes

    Veri Bilimi Okulu(數據科學學院)課程筆記
  • https://hbr.org/2017/06/a-refresher-on-ab-testing

    https://hbr.org/2017/06/a-refresher-on-ab-testing

  • https://medium.com/@ng.dasci/ger%C3%A7ek-verilerle-ab-testi-uygulamas%C4%B1-yeni-reklam-teklif-y%C3%B6ntemi-sat%C4%B1n-alma-say%C4%B1s%C4%B1n%C4%B1-artt%C4%B1rd%C4%B1-m%C4%B1-f9cdd45cdb21

    https://medium.com/@ng.dasci/ger%C3%A7ek-verilerle-ab-testi-uygulamas%C4%B1-yeni-reklam-teklif-y%C3%B6ntemi-sat%C4%B1n-alma -say%C4%B1s%C4%B1n%C4%B1-artt%C4%B1rd%C4%B1-m%C4%B1-f9cdd45cdb21

翻譯自: https://medium.com/swlh/a-b-test-application-on-real-data-8ec58f8280f9

大數據ab 測試

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/389922.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/389922.shtml
英文地址,請注明出處:http://en.pswp.cn/news/389922.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

492. 構造矩形

492. 構造矩形 作為一位web開發者&#xff0c; 懂得怎樣去規劃一個頁面的尺寸是很重要的。 現給定一個具體的矩形頁面面積&#xff0c;你的任務是設計一個長度為 L 和寬度為 W 且滿足以下要求的矩形的頁面。要求&#xff1a; 你設計的矩形頁面必須等于給定的目標面積。 寬度 …

node:爬蟲爬取網頁圖片

前言 周末自己在家閑著沒事&#xff0c;刷著微信&#xff0c;玩著手機&#xff0c;發現自己的微信頭像該換了&#xff0c;就去網上找了一下頭像&#xff0c;看著圖片&#xff0c;自己就想著作為一個碼農&#xff0c;可以把這些圖片都爬取下來做成一個微信小程序&#xff0c;說干…

如何更好的掌握一個知識點_如何成為一個更好的講故事的人3個關鍵點

如何更好的掌握一個知識點You’re launching a digital transformation initiative in the middle of the ongoing pandemic. You are pretty excited about this big-ticket investment, which has the potential to solve remote-work challenges that your organization fac…

centos 搭建jenkins+git+maven

gitmavenjenkins持續集成搭建發布人:[李源] 2017-12-08 04:33:37 一、搭建說明 系統&#xff1a;centos 6.5 jdk&#xff1a;1.8.0_144 jenkins&#xff1a;jenkins-2.93-1.1 git&#xff1a;git-2.9.0 maven&#xff1a;Maven 3.3.9 二、部署 2.1、jdk安裝 1&#xff09;下…

638. 大禮包

638. 大禮包 在 LeetCode 商店中&#xff0c; 有 n 件在售的物品。每件物品都有對應的價格。然而&#xff0c;也有一些大禮包&#xff0c;每個大禮包以優惠的價格捆綁銷售一組物品。 給你一個整數數組 price 表示物品價格&#xff0c;其中 price[i] 是第 i 件物品的價格。另有…

記錄一次spark連接mysql遇到的問題

在使用spark連接mysql的過程中報錯了&#xff0c;錯誤如下 08:51:32.495 [main] ERROR - Error loading factory org.apache.calcite.jdbc.CalciteJdbc41Factory java.lang.NoClassDefFoundError: org/apache/calcite/linq4j/QueryProviderat java.lang.ClassLoader.defineCla…

什么事數據科學_如果您想進入數據科學,則必須知道的7件事

什么事數據科學No way. No freaking way to enter data science any time soon…That is exactly what I thought a year back.沒門。 很快就不會出現進入數據科學的怪異方式 ……這正是我一年前的想法。 A little bit about my data science story: I am a complete beginner…

python基礎03——數據類型string

1. 字符串介紹 在python中&#xff0c;引號中加了引號的字符都被認為是字符串。 1 namejim 2 address"beijing" 3 msg My name is Jim, I am 22 years old! 那單引號、雙引號、多引號有什么區別呢&#xff1f; 1) 單雙引號木有任何區別&#xff0c;部分情況 需要考慮…

Java基礎-基本數據類型

Java中常見的轉義字符: 某些字符前面加上\代表了一些特殊含義: \r :return 表示把光標定位到本行行首. \n :next 表示把光標定位到下一行同樣的位置. 單獨使用在某些平臺上會產生不同的效果.通常這兩個一起使用,即:\r\n. 表示換行. \t :tab鍵,長度上相當于四個或者是八個空格 …

季節性時間序列數據分析_如何指導時間序列數據的探索性數據分析

季節性時間序列數據分析為什么要進行探索性數據分析&#xff1f; (Why Exploratory Data Analysis?) You might have heard that before proceeding with a machine learning problem it is good to do en end-to-end analysis of the data by carrying a proper exploratory …

TortoiseGit上傳項目到GitHub

1. 簡介 gitHub是一個面向開源及私有軟件項目的托管平臺&#xff0c;因為只支持git 作為唯一的版本庫格式進行托管&#xff0c;故名gitHub。 2. 準備 2.1 安裝git&#xff1a;https://git-scm.com/downloads。無腦安裝 2.2 安裝TortoiseGit(小烏龜)&#xff1a;https://torto…

496. 下一個更大元素 I

496. 下一個更大元素 I 給你兩個 沒有重復元素 的數組 nums1 和 nums2 &#xff0c;其中nums1 是 nums2 的子集。 請你找出 nums1 中每個元素在 nums2 中的下一個比其大的值。 nums1 中數字 x 的下一個更大元素是指 x 在 nums2 中對應位置的右邊的第一個比 x 大的元素。如果…

利用PHP擴展Taint找出網站的潛在安全漏洞實踐

一、背景 筆者從接觸計算機后就對網絡安全一直比較感興趣&#xff0c;在做PHP開發后對WEB安全一直比較關注&#xff0c;2016時無意中發現Taint這個擴展&#xff0c;體驗之后發現確實好用&#xff1b;不過當時在查詢相關資料時候發現關注此擴展的人數并不多&#xff1b;最近因為…

美團騎手檢測出虛假定位_在虛假信息活動中檢測協調

美團騎手檢測出虛假定位Coordination is one of the central features of information operations and disinformation campaigns, which can be defined as concerted efforts to target people with false or misleading information, often with some strategic objective (…

869. 重新排序得到 2 的冪

869. 重新排序得到 2 的冪 給定正整數 N &#xff0c;我們按任何順序&#xff08;包括原始順序&#xff09;將數字重新排序&#xff0c;注意其前導數字不能為零。 如果我們可以通過上述方式得到 2 的冪&#xff0c;返回 true&#xff1b;否則&#xff0c;返回 false。 示例 …

org.apache.maven.archiver.MavenArchiver.getManifest

eclipse導入新的maven項目時&#xff0c;pom.xml第一行報錯&#xff1a; org.apache.maven.archiver.MavenArchiver.getManifest(org.apache.maven.project.MavenProject, org.apache.maven.archiver.MavenArchiveConfiguration) 解決辦法&#xff1a; help -> Install New…

殺進程常用命令

殺進程命令pkill 進程名killall 進程名 # 平緩kill -HUP pid # 平緩kill -USR2 pidkill pid &#xff08;-9 不要使用&#xff09;轉載于:https://www.cnblogs.com/jmaly/p/9492406.html

CertUtil.exe被利用來下載惡意軟件

1、前言 經過國外文章信息&#xff0c;CertUtil.exe下載惡意軟件的樣本。 2、實現原理 Windows有一個名為CertUtil的內置程序&#xff0c;可用于在Windows中管理證書。使用此程序可以在Windows中安裝&#xff0c;備份&#xff0c;刪除&#xff0c;管理和執行與證書和證書存儲相…

335. 路徑交叉

335. 路徑交叉 給你一個整數數組 distance 。 從 X-Y 平面上的點 (0,0) 開始&#xff0c;先向北移動 distance[0] 米&#xff0c;然后向西移動 distance[1] 米&#xff0c;向南移動 distance[2] 米&#xff0c;向東移動 distance[3] 米&#xff0c;持續移動。也就是說&#x…

回歸分析假設_回歸分析假設的最簡單指南

回歸分析假設The Linear Regression is the simplest non-trivial relationship. The biggest mistake one can make is to perform a regression analysis that violates one of its assumptions! So, it is important to consider these assumptions before applying regress…