一、貝葉斯
貝葉斯定理由英國數學家貝葉斯 ( Thomas Bayes 1702-1761 ) 發展,用來描述兩個條件概率之間的關系,比如 P(A|B) 和 P(B|A)。按照乘法法則,可以立刻導出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可變形為:P(B|A) = P(A|B)*P(B) / P(A)。
例1:一座別墅在過去的 20 年里一共發生過 2 次被盜,別墅的主人有一條狗,狗平均每周晚上叫 3 次,在盜賊入侵時狗叫的概率被估計為 0.9,問題是:在狗叫的時候發生入侵的概率是多少?我們假設 A 事件為狗在晚上叫,B 為盜賊入侵,則以天為單位統計,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = 0.9,按照公式很容易得出結果:P(B|A) = 0.9*(2/7300) / (3/7) = 0.00058
例2,現分別有 A、B 兩個容器,在容器 A 里分別有 7 個紅球和 3 個白球,在容器 B 里有 1 個紅球和 9 個白球,現已知從這兩個容器里任意抽出了一個球,問這個球是紅球且來自容器 A 的概率是多少?假設已經抽出紅球為事件 B,選中容器 A 為事件 A,則有:P(B) = 8/20,P(A) = 1/2,P(B|A) = 7/10,按照公式,則有:P(A|B) = (7/10)*(1/2) / (8/20) = 0.875貝葉斯公式為利用搜集到的信息對原有判斷進行修正提供了有效手段。在采樣之前,經濟主體對各種假設有一個判斷(先驗概率),關于先驗概率的分布,通常可根據經濟主體的經驗判斷確定(當無任何信息時,一般假設各先驗概率相同),較復雜精確的可利用包括最大熵技術或邊際分布密度以及相互信息原理等方法來確定先驗概率分布。
例3
貝葉斯法則的舉例分析
可以將貝葉斯法則的分析思路表達如下。
挑戰者B不知道原壟斷者A是屬于高阻撓成本類型還是低阻撓成本類型,但B知道,如果A屬于高阻撓成本類型,B進入市場時A進行阻撓的概率是20%(此時A為了保持壟斷帶來的高利潤,不計成本地拼命阻撓);如果A屬于低阻撓成本類型,B進入市場時A進行阻撓的概率是100%。
博弈開始時,B認為A屬于高阻撓成本企業的概率為70%,因此,B估計自己在進入市場時,受到A阻撓的概率為:
0.7×0.2+0.3×1=0.44
0.44是在B給定A所屬類型的先驗概率下,A可能采取阻撓行為的概率。
當B進入市場時,A確實進行阻撓。使用貝葉斯法則,根據阻撓這一可以觀察到的行為,B認為A屬于高阻撓成本企業的概率變成A屬于高成本企業的概率=0.7(A屬于高成本企業的先驗概率)×0.2(高成本企業對新進入市場的企業進行阻撓的概率)÷0.44=0.32
根據這一新的概率,B估計自己在進入市場時,受到A阻撓的概率為:
0.32×0.2+0.68×1=0.744
如果B再一次進入市場時,A又進行了阻撓。使用貝葉斯法則,根據再次阻撓這一可觀察到的行為,B認為A屬于高阻撓成本企業的概率變成。
A屬于高成本企業的概率=0.32(A屬于高成本企業的先驗概率)×0.2(高成本企業對新進入市場的企業進行阻撓的概率)÷0.744=0.086
這樣,根據A一次又一次的阻撓行為,B對A所屬類型的判斷逐步發生變化,越來越傾向于將A判斷為低阻撓成本企業了。
以上例子表明,在不完全信息動態博弈中,參與人所采取的行為具有傳遞信息的作用。盡管A企業有可能是高成本企業,但A企業連續進行的市場進入阻撓,給B企業以A企業是低阻撓成本企業的印象,從而使得B企業停止了進入地市場的行動。
應該指出的是,傳遞信息的行為是需要成本的。假如這種行為沒有成本,誰都可以效仿,那么,這種行為就達不到傳遞信息的目的。只有在行為需要相當大的成本,因而別人不敢輕易效仿時,這種行為才能起到傳遞信息的作用。
傳遞信息所支付的成本是由信息的不完全性造成的。但不能因此就說不完全信息就一定是壞事。研究表明,在重復次數有限的囚徒困境博弈中,不完全信息可以導致博弈雙方的合作。理由是:當信息不完全時,參與人為了獲得合作帶來的長期利益,不愿過早暴露自己的本性。這就是說,在一種長期的關系中,一個人干好事還是干壞事,常常不取決于他的本性是好是壞,而在很大程度上取決于其他人在多大程度上認為他是好人。如果其他人不知道自己的真實面目,一個壞人也會為了掩蓋自己而在相當長的時期內做好事。[2]?