Linux網絡編程——tcp并發服務器(poll實現)

https://blog.csdn.net/lianghe_work/article/details/46535859

想詳細徹底地了解poll或看懂下面的代碼請參考《Linux網絡編程——I/O復用之poll函數》

代碼:

  1. #include <string.h>
  2. #include <stdio.h>
  3. #include <stdlib.h>
  4. #include <unistd.h>
  5. #include <sys/select.h>
  6. #include <sys/time.h>
  7. #include <sys/socket.h>
  8. #include <netinet/in.h>
  9. #include <arpa/inet.h>
  10. #include <poll.h>
  11. #include <errno.h>
  12. #define OPEN_MAX 100
  13. int main(int argc, char *argv[])
  14. {
  15. //1.創建tcp監聽套接字
  16. int sockfd = socket(AF_INET, SOCK_STREAM, 0);
  17. //2.綁定sockfd
  18. struct sockaddr_in my_addr;
  19. bzero(&my_addr, sizeof(my_addr));
  20. my_addr.sin_family = AF_INET;
  21. my_addr.sin_port = htons(8000);
  22. my_addr.sin_addr.s_addr = htonl(INADDR_ANY);
  23. bind(sockfd, (struct sockaddr *)&my_addr, sizeof(my_addr));
  24. //3.監聽listen
  25. listen(sockfd, 10);
  26. //4.poll相應參數準備
  27. struct pollfd client[OPEN_MAX];
  28. int i = 0, maxi = 0;
  29. for(;i<OPEN_MAX; i++)
  30. client[i].fd = -1;//初始化poll結構中的文件描述符fd
  31. client[0].fd = sockfd;//需要監測的描述符
  32. client[0].events = POLLIN;//普通或優先級帶數據可讀
  33. //5.對已連接的客戶端的數據處理
  34. while(1)
  35. {
  36. int ret = poll(client, maxi+1, -1);//對加入poll結構體數組所有元素進行監測
  37. //5.1監測sockfd(監聽套接字)是否存在連接
  38. if((client[0].revents & POLLIN) == POLLIN )
  39. {
  40. struct sockaddr_in cli_addr;
  41. int clilen = sizeof(cli_addr);
  42. int connfd = 0;
  43. //5.1.1 從tcp完成連接中提取客戶端
  44. connfd = accept(sockfd, (struct sockaddr *)&cli_addr, &clilen);
  45. //5.1.2 將提取到的connfd放入poll結構體數組中,以便于poll函數監測
  46. for(i=1; i<OPEN_MAX; i++)
  47. {
  48. if(client[i].fd < 0)
  49. {
  50. client[i].fd = connfd;
  51. client[i].events = POLLIN;
  52. break;
  53. }
  54. }
  55. //5.1.3 maxi更新
  56. if(i > maxi)
  57. maxi = i;
  58. //5.1.4 如果沒有就緒的描述符,就繼續poll監測,否則繼續向下看
  59. if(--ret <= 0)
  60. continue;
  61. }
  62. //5.2繼續響應就緒的描述符
  63. for(i=1; i<=maxi; i++)
  64. {
  65. if(client[i].fd < 0)
  66. continue;
  67. if(client[i].revents & (POLLIN | POLLERR))
  68. {
  69. int len = 0;
  70. char buf[128] = "";
  71. //5.2.1接受客戶端數據
  72. if((len = recv(client[i].fd, buf, sizeof(buf), 0)) < 0)
  73. {
  74. if(errno == ECONNRESET)//tcp連接超時、RST
  75. {
  76. close(client[i].fd);
  77. client[i].fd = -1;
  78. }
  79. else
  80. perror("read error:");
  81. }
  82. else if(len == 0)//客戶端關閉連接
  83. {
  84. close(client[i].fd);
  85. client[i].fd = -1;
  86. }
  87. else//正常接收到服務器的數據
  88. send(client[i].fd, buf, len, 0);
  89. //5.2.2所有的就緒描述符處理完了,就退出當前的for循環,繼續poll監測
  90. if(--ret <= 0)
  91. break;
  92. }
  93. }
  94. }
  95. return 0;
  96. }

運行結果:

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/383678.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/383678.shtml
英文地址,請注明出處:http://en.pswp.cn/news/383678.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

二分查找的最大比較次數

二分查找很簡單&#xff0c;可是對于一個區間長度為n的數組&#xff0c;最大的比較次數為多少呢&#xff1f; 對于標準的二分查找&#xff0c;我們每次從區間[l,r)中取一個值&#xff0c;和中間值mid(lr)>>1進行比較&#xff0c;然后將數組分為[l,mid) [mid1,r)&#xf…

Linux網絡編程——I/O復用函數之epoll

https://blog.csdn.net/lianghe_work/article/details/46544567一、epoll概述epoll 是在 2.6 內核中提出的&#xff0c;是之前的 select() 和 poll() 的增強版本。相對于 select() 和 poll() 來說&#xff0c;epoll 更加靈活&#xff0c;沒有描述符限制。epoll 使用一個文件描述…

操作系統【三】內存管理基礎+連續內存分配

內存的基礎知識 內存分為按字節編址&#xff08;8位&#xff09;和字編制&#xff08;不同計算機不一樣&#xff0c;64位計算機就是64位&#xff0c;即8個字節&#xff09; 相對地址邏輯地址 絕對地址物理地址 從邏輯地址到物理地址的轉換由裝入解決。 裝入的三種方式 絕對…

MSG_PEEK標志

https://blog.csdn.net/aspnet_lyc/article/details/28937229 MSG_PEEK標志可以用來讀取套接字接收隊列中可讀的數據&#xff0c;一些情況會用到它&#xff0c;比如為了避免不阻塞而先檢查套接字接收隊列中可讀的數據長度&#xff0c;再采取相應操作。當然&#xff0c;不阻塞也…

快速排序詳解+各種實現方式

快速排序的思想大體來說比較簡單&#xff0c;就是從數組中挑選一個數字當做樞紐&#xff0c;然后將比樞紐大的和比樞紐小的分別放在樞紐的兩邊&#xff0c;再遞歸地對兩邊進行操作&#xff0c;從而進行分治解決問題。平均情況下快速排序是復雜度為O(nlogn)O(nlogn)O(nlogn)&…

C++的單例模式與線程安全單例模式(懶漢/餓漢)

https://www.cnblogs.com/qiaoconglovelife/p/5851163.html1 教科書里的單例模式我們都很清楚一個簡單的單例模式該怎樣去實現&#xff1a;構造函數聲明為private或protect防止被外部函數實例化&#xff0c;內部保存一個private static的類指針保存唯一的實例&#xff0c;實例的…

計算矩陣的逆和行列式的值(高斯消元+LU分解)

計算矩陣的逆 選主元的高斯消元法 樸素的高斯消元法是將矩陣A和單位矩陣放在一起&#xff0c;通過行操作&#xff08;或者列操作&#xff09;將A變為單位矩陣&#xff0c;這個時候單位矩陣就是矩陣A的逆矩陣。從上到下將A變為上三角矩陣的復雜度為O(n3n^3n3)&#xff0c;再從下…

Linux網絡編程——tcp并發服務器(epoll實現)

https://blog.csdn.net/lianghe_work/article/details/46551871通過epoll實現tcp并發回執服務器&#xff08;客戶端給服務器發啥&#xff0c;服務器就給客戶端回啥&#xff09; 代碼如下&#xff1a;#include <string.h>#include <stdio.h>#include <stdlib.h&g…

證明AVL樹的上界和下界

對于n個節點的AVL樹&#xff0c;其高度最低的時候肯定為葉子節點只在最后一層和倒數第二層的時候。即對于2k?1<n≦2k1?12^k-1< n\leqq 2^{k1}-12k?1<n≦2k1?1的時候下界都為kkk。因此下界為h┌log2(n1)┐?1h\ulcorner log_2(n1)\urcorner-1h┌log2?(n1)┐?1 對…

淺談dup和dup2的用法

https://blog.csdn.net/u012058778/article/details/78705536一、dup和dup2函數 這兩個函數都可以來復制一個現有的文件描述符&#xff0c;他們的聲明如下&#xff1a;#include <unistd.h>int dup(int fd);int dup2(int fd, int fd 2); 123 關于dup函數&#xff0c;當我…

C++ cin 實現循環讀入

習慣了使用while(~scanf("%d",x)){}來實現循環讀入&#xff0c;但是有時候使用泛型編程的時候就必須使用C中的cin&#xff0c;但是當我想要實現循環讀入的時候卻發現有些困難。 我們可以看一下下面這個簡單的例子&#xff1a; #include <iostream>using name…

BFPTR算法詳解+實現+復雜度證明

BFPTR算法是由Blum、Floyed、Pratt、Tarjan、Rivest這五位牛人一起提出來的&#xff0c;其特點在于可以以最壞復雜度為O(n)O(n)O(n)地求解top?ktop-ktop?k問題。所謂top?ktop-ktop?k問題就是從一個序列中求解其第k大的問題。 top?ktop-ktop?k問題有許多解決方法&#xff…

C++子類對象隱藏了父類的同名成員函數(隱藏篇)

https://blog.csdn.net/alpha_love/article/details/75222175#include <iostream>#include <stdlib.h>#include <string>using namespace std;/*** 定義人類: Person* 數據成員: m_strName* 成員函數: attack()*/class Person{public:Person(){cout<<&…

隨機化快速排序+快速選擇 復雜度證明+運行測試

對于快速排序和快速選擇我之前的文章已經有詳細的說明&#xff0c;需要了解的同學可以移步 傳送門&#xff1a;快速排序&#xff5c;快速選擇(BFPTR) 所謂隨機化其實就是選擇樞紐的時候使用隨機數選擇而已&#xff0c;實現起來很簡單。但是我們使用隨機數如何保證復雜度呢&am…

C++子類父類成員函數的覆蓋和隱藏實例詳解

https://www.jb51.net/article/117380.htm函數的覆蓋覆蓋發生的條件&#xff1a; &#xff08;1&#xff09; 基類必須是虛函數&#xff08;使用virtual 關鍵字來進行聲明&#xff09; &#xff08;2&#xff09;發生覆蓋的兩個函數分別位于派生類和基類 &#xff08;3&#xf…

【Linux基礎】Linux的5種IO模型詳解

引入 為了更好的理解5種IO模型的區別&#xff0c;在介紹IO模型之前&#xff0c;我先介紹幾個概念 1.進程的切換 &#xff08;1&#xff09;定義 為了控制進程的執行&#xff0c;內核必須有能力掛起正在CPU上運行的進程&#xff0c;并恢復以前掛起的某個進程的執行。即從用戶…

計算機網絡【五】廣播通信+以太網

局域網的拓撲 廣域網使用點到點通信 局域網使用廣播通信 可以隨意向網絡中添加設備。 總線網星形網&#xff0c;使用集線器。現在多使用星形網絡。環狀網樹形網 其中匹配電阻用來吸收總線上傳播的信號。 共享通信媒體 靜態劃分信道 頻分復用、時分復用、波分復用、碼分復用…

聊聊Linux 五種IO模型

一篇《聊聊同步、異步、阻塞與非阻塞》已經通俗的講解了&#xff0c;要理解同步、異步、阻塞與非阻塞重要的兩個概念點了&#xff0c;沒有看過的&#xff0c;建議先看這篇博文理解這兩個概念點。在認知上&#xff0c;建立統一的模型。這樣&#xff0c;大家在繼續看本篇時&#…

操作系統【四】分頁存儲管理

連續分配方式的缺點&#xff1a; 固定分區分配&#xff1a;缺乏靈活性&#xff0c;產生大量的內部碎片&#xff0c;內存的利用率較低 動態分區分配&#xff1a;會產生許多外部碎片&#xff0c;雖然可以用緊湊技術處理&#xff0c;但是緊湊技術的時間代價較高 基本分頁存儲管理…

聊聊同步、異步、阻塞與非阻塞

近來遇到了一些常見的概念&#xff0c;尤其是網絡編程方面的概念&#xff0c;如&#xff1a;阻塞、非阻塞、異步I/O等等&#xff0c;對于這些概念自己也沒有太清晰的認識&#xff0c;只是很模糊的概念&#xff0c;說了解吧也了解&#xff0c;但是要讓自己準確的描述概念方面的具…