二叉樹的概念
概念
一棵二叉樹是結點的一個有限集合,該集合或者為空,或者是由一個根節點加上兩棵別稱為左子樹和右子樹
的二叉樹組成。
二叉樹的特點:
- 每個結點最多有兩棵子樹,即二叉樹不存在度大于2的結點。
- 二叉樹的子樹有左右之分,其子樹的次序不能顛倒。
特殊二叉樹
- 滿二叉樹:一個二叉樹,如果每一個層的結點數都達到最大值,則這個二叉樹就是滿二叉樹。也就是
說,如果一個二叉樹的層數為K,且結點總數是(2^k) -1 ,則它就是滿二叉樹。 - 完全二叉樹:完全二叉樹是效率很高的數據結構,完全二叉樹是由滿二叉樹而引出來的。對于深度為K
的,有n個結點的二叉樹,當且僅當其每一個結點都與深度為K的滿二叉樹中編號從1至n的結點一一對
應時稱之為完全二叉樹。 要注意的是滿二叉樹是一種特殊的完全二叉樹。
關于樹的名詞解釋
節點的度:一個節點含有的子樹的個數稱為該節點的度;
葉節點或終端節點:度為0的節點稱為葉節點;
非終端節點或分支節點:度不為0的節點;
雙親節點或父節點:若一個節點含有子節點,則這個節點稱為其子節點的父節點;
孩子節點或子節點:一個節點含有的子樹的根節點稱為該節點的子節點;
兄弟節點:具有相同父節點的節點互稱為兄弟節點;
樹的度:一棵樹中,最大的節點的度稱為樹的度;
節點的層次:從根開始定義起,根為第1層,根的子節點為第2層,以此類推;
樹的高度或深度:樹中節點的最大層次;
堂兄弟節點:雙親在同一層的節點互為堂兄弟;
節點的祖先:從根到該節點所經分支上的所有節點;
子孫:以某節點為根的子樹中任一節點都稱為該節點的子孫。
森林:由m(m>=0)棵互不相交的樹的集合稱為森林;