PairLIE論文閱讀筆記
論文為2023CVPR的Learning a Simple Low-light Image Enhancer from Paired Low-light Instances.論文鏈接如下:
openaccess.thecvf.com/content/CVPR2023/papers/Fu_Learning_a_Simple_Low-Light_Image_Enhancer_From_Paired_Low-Light_Instances_CVPR_2023_paper.pdf
文章目錄
- PairLIE論文閱讀筆記
- 出發點
- 創新點
- 模型
- 設計及其損失
出發點
1.However, collecting high-quality reference maps in real-world scenarios is time-consuming and expensive.
出發點1:在低光照領域,從現實世界中獲取高質量的參考照片進行監督學習,既費時又困難,成本昂貴。
因為獲得低光環境的照片是容易的,而此低光照片對應的亮度較大的參考圖片是難得的。
2.To tackle the issues of limited information in a single low-light image and the poor adaptability of handcrafted priors, we propose to leverage paired low-light instances to train the LIE network.
Additionally, twice-exposure images provide useful information for solving the LIE task. As a result, our solution can reduce the demand for handcrafted priors and improve the adaptability of the network.
出發點2:為了解決手動設置的先驗的低適應性,減少手動設置先驗的需求,同時提升模型對陌生環境的適應性。
創新點
The core insight of our approach is to sufficiently exploit priors from paired low-light images.
Those low-light image pairs share the same scene content but different illumination. Mathematically, Retinex decomposition with low-light image pairs can be expressed as:
創新點1:作者利用兩張低光圖片進行訓練,以充分提取低光圖片的信息。
instead of directly imposing the Retinex decomposition on original low-light images, we adopt a simple self-supervised mechanism to remove inappropriate features and implement the Retinex decomposition on the optimized image.
創新點2:作者基于Retinex理論,但是并不循舊地直接運用Retinex的分解。作者采用一個簡單的自監督機制以實現不合理特征的去除(通常是一些噪音)以及更好地實現Retinex理論。
模型
將兩張同一場景不同曝光的低光圖片送入訓練中,圖片I1與I2先經過P-Net去除噪音,得到i1與i2,然后利用L-Net與R-Net分解為照度L1與反射R1(對應有L2與R2)。
在測試,只需要輸入一張低光照圖片I,經過P-Net的噪音去除,得到i,然后用L-Net與R-Net分解為照度和反射,然后對照度L進行增強,操作為g(L),把增強結果與反射R進行元素乘法,得到增強后的圖片Enhanced Image。
設計及其損失
Note that, this paper does not focus on designing modernistic network structures. L-Net and R-Net are very similar and simple,
1.模型使用的L-Net與R-Net十分簡單。整體架構只是單純的卷積神經網絡。
Apart from L-Net and R-Net, we introduce P-Net to remove inappropriate features from the original image. Specifically, the structure of the P-Net is identical to the R-Net.
2,P-Net被設計用于去除不合理特征。
L p = ∣ ∣ I 1 ? i 1 ∣ ∣ 2 2 L_p = \mid\mid I_1 - i_1 \mid\mid^2_2 Lp?=∣∣I1??i1?∣∣22?
Note that the projection loss needs to cooperate with the other constraints to avoid a trivial solution.i,e.,i1 = I1.
3.Projection Loss:最大程度限制去除不合理特征后的i1和原始低光圖片I1的區別。
這個損失需要避免一個特例,即降噪后圖片與原圖相同,即未降噪。
L c = ∣ ∣ R 1 ? R 2 ∣ ∣ 2 2 (1) L_c = \mid\mid R_1 - R_2 \mid\mid^2_2\tag{1} Lc?=∣∣R1??R2?∣∣22?(1)
Since sensor noise hidden in dark regions will be amplified when the contrast is improved.
In our method, the sensor noise can be implicitly removed by Eq. 1.
4.Reflection Loss:通常用傳感或攝影設備拍攝低光場景照片會攜帶一定的設備噪音,這個損失最大限度保證兩張圖片的反射是相同的,減少傳感或攝影設備的影響,這是因為圖片場景的內容相同。
這個損失是確保反射的一致性。
L R = ∣ ∣ R ° L ? i ∣ ∣ 2 2 + ∣ ∣ R ? i / s t o p g r a d ( L ) ∣ ∣ 2 2 + ∣ ∣ L ? L 0 ∣ ∣ 2 2 + ∣ ∣ ? L ∣ ∣ 1 L_R = \mid\mid R \circ L - i \mid\mid^2_2 + \mid\mid R - i / stopgrad(L)\mid\mid^2_2 + \mid\mid L - L_0 \mid\mid^2_2 + \mid\mid \nabla L \mid\mid_1 LR?=∣∣R°L?i∣∣22?+∣∣R?i/stopgrad(L)∣∣22?+∣∣L?L0?∣∣22?+∣∣?L∣∣1?
∣ ∣ R ° L ? i ∣ ∣ 2 2 \mid\mid R \circ L - i \mid\mid^2_2 ∣∣R°L?i∣∣22? is applied to ensure a reasonable decomposition.
∣ ∣ R ? i / s t o p g r a d ( L ) ∣ ∣ 2 2 \mid\mid R - i / stopgrad(L) \mid\mid^2_2 ∣∣R?i/stopgrad(L)∣∣22? is to guide the decomposition.
Specifically, the initialized illumination L0 is calculated via the maximum of the R, G, and B channels: L 0 = m a x c ∈ R , G , B I c ( x ) . L_0 = \underset{c \in{R, G, B}}{max} I^c(x). L0?=c∈R,G,Bmax?Ic(x).
5.Retinex Loss:Retinex損失是為了限制分解組塊L-Net和R-Net以滿足Retinex的理論要求。
本文畢