Multi-Cell Downlink Beamforming: Direct FP, Closed-Form FP, Weighted MMSE

這里寫自定義目錄標題

  • Direct FP
  • Closed-Form FP
    • the Lagrangian function
    • the Lagrange dual function: maximizing the Lagrangian
    • the Lagrange dual problem: minimizing the Lagrange dual function
    • Closed-Form FP
  • Weighted MMSE
    • 原論文
  • Lagrange dual
    • 5.1.1 The Lagrangian
    • 5.1.2 The Lagrange dual function
    • 5.2 The Lagrange dual problem
    • 5.2.3 Strong duality and Slater’s constraint qualification
    • 5.2.3 Strong duality and Slater’s constraint qualification
    • 5.5.3 KKT optimality conditions
  • 仿真

Multi-User in each Cell, MISO
沈闓明代碼

Direct FP

K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” in IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616-2630, 15 May15, 2018, doi: 10.1109/TSP.2018.2812733.

the multidimensional quadratic transform

∑ n = 1 N ∑ k = 1 K log ? 2 ( 1 + ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) \sum\limits_{n = 1}^N {\sum\limits_{k = 1}^K {{{\log }_2}\left( {1 + \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} } n=1N?k=1K?log2? ?1+(j,i)=(n,k)?hj,n,kH?wj,i?2+σn,k2?hn,n,kH?wn,k?2? ?
the direct FP approach applies the multidimensional quadratic transform (Theorem 2) to each SINR term.
f q ( W , Y ) = ∑ ( n , k ) log ? ( 1 + 2 R e { y n , k H w n , k H h n , n , k } ? ∣ y n , k ∣ 2 ( ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) ) {f_q}\left( {{\bf{W}},{\bf{Y}}} \right) = \sum\limits_{(n,k)} {\log \left( {1 + 2{\rm{Re}}\left\{ {y_{n,k}^H{\bf{w}}_{n,k}^H{{\bf{h}}_{n,n,k}}} \right\} - {{\left| {{y_{n,k}}} \right|}^2}\left( {\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)} \right)} fq?(W,Y)=(n,k)?log(1+2Re{yn,kH?wn,kH?hn,n,k?}?yn,k?2((j,i)=(n,k)? ?hj,n,kH?wj,i? ?2+σn,k2?))

Direct FP
初始化 w n , k , ? n , k {\bf{w}}_{n,k}, \forall n,k wn,k?,?n,k
重復

  1. 更新 y n , k ? = h n , n , k H w n , k ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 y_{n,k}^ \star = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} yn,k??=(j,i)=(n,k)?hj,n,kH?wj,i?2+σn,k2?hn,n,kH?wn,k?? with w n , k , ? n , k {\bf{w}}_{n,k}, \forall n,k wn,k?,?n,k
  2. 給定 y n , k {y_{n,k}} yn,k?,求解問題,更新 w n , k {{\bf{w}}_{n,k}} wn,k?
    max ? { w n , k , y n , k } f q ( W , Y ) s . t . ∑ k = 1 K w n , k H w n , k ≤ p ˉ n , ? n = 1 , … , N , \begin{array}{l} \mathop {\max }\limits_{\left\{ {{{\bf{w}}_{n,k}},{y_{n,k}}} \right\}} \;\;{f_q}\left( {{\bf{W}},{\bf{Y}}} \right)\\ {\rm{s}}.{\rm{t}}.\;\sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} \le {{\bar p}_n},\forall n = 1, \ldots ,N, \end{array} {wn,k?,yn,k?}max?fq?(W,Y)s.t.k=1K?wn,kH?wn,k?pˉ?n?,?n=1,,N,?
    the optimization problem is a convex problem of w n , k {{\bf{w}}_{n,k}} wn,k? when the auxiliary variable y n , k {y_{n,k}} yn,k? is held fixed.

直到 f q ( W , Y ) {f_q}\left( {{\bf{W}},{\bf{Y}}} \right) fq?(W,Y)收斂

Closed-Form FP

K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” in IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616-2630, 15 May15, 2018, doi: 10.1109/TSP.2018.2812733.

∑ n = 1 N ∑ k = 1 K log ? 2 ( 1 + ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) \sum\limits_{n = 1}^N {\sum\limits_{k = 1}^K {{{\log }_2}\left( {1 + \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} } n=1N?k=1K?log2? ?1+(j,i)=(n,k)?hj,n,kH?wj,i?2+σn,k2?hn,n,kH?wn,k?2? ?
Lagrangian Dual Transform (Multidimensional and Complex)
f r ( W , U ) = ∑ ( n , k ) ( log ? ( 1 + u n , k ) ? u n , k + ( 1 + u n , k ) ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) {f_r}\left( {{\bf{W}},{\bf{U}}} \right) = \sum\limits_{(n,k)} {\left( {\log \left( {1 + {u_{n,k}}} \right) - {u_{n,k}} + \left( {1 + {u_{n,k}}} \right)\frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} fr?(W,U)=(n,k)? ?log(1+un,k?)?un,k?+(1+un,k?)(j,i)?hj,n,kH?wj,i?2+σn,k2?hn,n,kH?wn,k?2? ?
? ? u n , k f r ( W , U ) = 0 \frac{\partial }{{\partial {u_{n,k}}}}{f_r}\left( {{\bf{W}},{\bf{U}}} \right) = 0 ?un,k???fr?(W,U)=0
u n , k ? = γ n , k = ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∈ R 1 u_{n,k}^ \star = {\gamma _{n,k}} = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{R}}^1} un,k??=γn,k?=(j,i)=(n,k)?hj,n,kH?wj,i?2+σn,k2?hn,n,kH?wn,k?2?R1
Quadratic Transform (Multidimensional)
f q ( W , U , V ) = ∑ ( n , k ) ( 2 ( 1 + u n , k ) R e { w n , k H h n , n , k v n , k } ? ∣ v n , k ∣ 2 ( ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) ) + c o n s t ( U ) {f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) = \sum\limits_{(n,k)} {\left( {2\sqrt {(1 + {u_{n,k}})} {\rm{Re}}\left\{ {{\bf{w}}_{n,k}^H{{\bf{h}}_{n,n,k}}{v_{n,k}}} \right\} - {{\left| {{v_{n,k}}} \right|}^2}\left( {\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)} \right)} + {\rm{const}}({\bf{U}}) fq?(W,U,V)=(n,k)?(2(1+un,k?) ?Re{wn,kH?hn,n,k?vn,k?}?vn,k?2((j,i)? ?hj,n,kH?wj,i? ?2+σn,k2?))+const(U)
? ? v n , k f q ( W , U , V ) = 0 \frac{\partial }{{\partial {v_{n,k}}}}{f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) = 0 ?vn,k???fq?(W,U,V)=0
v n , k ? = ( 1 + u n , k ) h n , n , k H w n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 v_{n,k}^ \star = \frac{{\sqrt {(1 + {u_{n,k}})} {\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} vn,k??=(j,i)?hj,n,kH?wj,i?2+σn,k2?(1+un,k?) ?hn,n,kH?wn,k??

Transformed Problem
max ? { w n , k } f q ( W , U , V ) s . t . p ˉ n ? ∑ k = 1 K w n , k H w n , k ≥ 0 , ? n = 1 , … , N , \begin{array}{l} \mathop {\max }\limits_{\left\{ {{{\bf{w}}_{n,k}}} \right\}} \;\;{f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right)\\ {\rm{s}}.{\rm{t}}.\;{{\bar p}_n} - \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} \ge 0,\forall n = 1, \ldots ,N, \end{array} {wn,k?}max?fq?(W,U,V)s.t.pˉ?n??k=1K?wn,kH?wn,k?0,?n=1,,N,?

the Lagrangian function

L ( W , U , V , η ) = f q ( W , U , V ) + ∑ n = 1 N η n ( p ˉ n ? ∑ k = 1 K w n , k H w n , k ) L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) = {f_q}({\bf{W}},{\bf{U}},{\bf{V}}) + \sum\limits_{n = 1}^N {{\eta _n}\left( {{{\bar p}_n} - \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} } \right)} L(W,U,V,η)=fq?(W,U,V)+n=1N?ηn?(pˉ?n??k=1K?wn,kH?wn,k?)

the Lagrange dual function: maximizing the Lagrangian

g ( η ) = m a x { w n , k } L ( W , U , V , η ) g\left( {\bm{\eta}} \right) = \mathop {{\rm{max}}}\limits_{\left\{ {{{\bf{w}}_{n,k}}} \right\}} \;L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) g(η)={wn,k?}max?L(W,U,V,η)
? ? w n , k L ( W , U , V , η ) = 0 ? \frac{\partial }{{\partial {{\bf{w}}_{n,k}}}}L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) = 0 \Rightarrow ?wn,k???L(W,U,V,η)=0?
w n , k ? = ( 1 + u n , k ) h n , n , k v n , k ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I {\bf{w}}_{n,k}^* = \frac{{\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}}}}{{\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}I}} wn,k??=(m,l)?(hn,m,l?vm,l?vm,lH?hn,m,lH?)+ηn?I(1+un,k?) ?hn,n,k?vn,k??

the Lagrange dual problem: minimizing the Lagrange dual function

Lagrange multipliers are component-wise non-negative
m i n η ≥ 0 g ( η ) \mathop {{\rm{min}}}\limits_{{\bm{\eta}} \ge 0} g\left( {\bm{\eta}} \right) η0min?g(η)

Closed-Form FP

Closed-Form FP
初始化 w n , k , ? n , k {\bf{w}}_{n,k}, \forall n,k wn,k?,?n,k
重復

  1. 更新 u n , k ? = γ n , k = ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∈ R 1 u_{n,k}^ \star = {\gamma _{n,k}} = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum\limits_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{R}}^1} un,k??=γn,k?=(j,i)=(n,k)?hj,n,kH?wj,i?2+σn,k2?hn,n,kH?wn,k?2?R1 with w n , k , ? n , k {\bf{w}}_{n,k}, \forall n,k wn,k?,?n,k
  2. 更新 v n , k ? = ( 1 + u n , k ) h n , n , k H w n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 v_{n,k}^ \star = \frac{{\sqrt {(1 + {u_{n,k}})} {\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} vn,k??=(j,i)?hj,n,kH?wj,i?2+σn,k2?(1+un,k?) ?hn,n,kH?wn,k?? with w n , k , ? n , k {\bf{w}}_{n,k}, \forall n,k wn,k?,?n,k and u n , k , ? n , k u_{n,k}, \forall n,k un,k?,?n,k
  3. 更新 η n , ? n {\eta _n}, \forall n ηn?,?n。利用二分法可以找到最小的 η n {\eta _n} ηn? ,使得 ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) = p ˉ n \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} = {\bar p_n} k=1K?wn,kH?(ηn?)wn,k?(ηn?)=pˉ?n?
    其中, w n , k ( η n ) = ( 1 + u n , k ) h n , n , k v n , k ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I {{\bf{w}}_{n,k}}\left( {{\eta _n}} \right) = \frac{{\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}}}}{{\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}I}} wn,k?(ηn?)=(m,l)?(hn,m,l?vm,l?vm,lH?hn,m,lH?)+ηn?I(1+un,k?) ?hn,n,k?vn,k??
  4. 更新 w n , k ? = ( 1 + u n , k ) h n , n , k v n , k ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I {\bf{w}}_{n,k}^* = \frac{{\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}}}}{{\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}I}} wn,k??=(m,l)?(hn,m,l?vm,l?vm,lH?hn,m,lH?)+ηn?I(1+un,k?) ?hn,n,k?vn,k?? with u n , k , ? n , k u_{n,k}, \forall n,k un,k?,?n,k, v n , k , ? n , k v_{n,k}, \forall n,k vn,k?,?n,k, and η n , ? n {\eta _n}, \forall n ηn?,?n

直到 f q ( W , U , V ) {f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) fq?(W,U,V)收斂

對偶變量或Lagrange multipliers的更新:KKT條件 η n ( p ˉ n ? ∑ k = 1 K w n , k H w n , k ) = 0 , ? n = 1 , … , N , {\eta _n}\left( {{{\bar p}_n} - \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} } \right) = 0,\forall n = 1, \ldots ,N, ηn?(pˉ?n??k=1K?wn,kH?wn,k?)=0,?n=1,,N,
∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1K?wn,kH?(ηn?)wn,k?(ηn?)是關于 η n {\eta _n} ηn?的單調遞減函數,利用二分法可以找到最小的 η n {\eta _n} ηn? ,使得 ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) = p ˉ n \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} = {\bar p_n} k=1K?wn,kH?(ηn?)wn,k?(ηn?)=pˉ?n?
η n < η n ? {\eta _n} < \eta _n^* ηn?<ηn??時, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1K?wn,kH?(ηn?)wn,k?(ηn?) >基站最大發射功率 p ˉ n {\bar p_n} pˉ?n?
η n = η n ? {\eta _n} = \eta _n^* ηn?=ηn?? 時, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1K?wn,kH?(ηn?)wn,k?(ηn?) =基站最大發射功率 p ˉ n {\bar p_n} pˉ?n?
η n > η n ? {\eta _n} > \eta _n^* ηn?>ηn??時, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum\limits_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1K?wn,kH?(ηn?)wn,k?(ηn?) <基站最大發射功率 p ˉ n {\bar p_n} pˉ?n?

Weighted MMSE

u n , k = h n , n , k H w n , k ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 {u_{n,k}} = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum\limits_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}} un,k?=(m,j)?hm,n,kH?wm,j?2+σn,k2?hn,n,kH?wn,k??
(圖中h的下標打錯了)

hm,n,k denote the downlink channel between BS m and UE k in cell n
wn,k denote the beamformer for UE k in cell n
the optimum Lagrange multiplier μ n ? \mu _n^ \star μn?? can be determined efficiently by a bisection search method.
Weighted MMSE

原論文

Q. Shi, M. Razaviyayn, Z. -Q. Luo and C. He, “An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel,” in IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331-4340, Sept. 2011, doi: 10.1109/TSP.2011.2147784.

Weighted MMSE
V i k {{\bf{V}}_{{i_k}}} Vik?? 表示基站k對用戶 i k {i_k} ik? 的波束成形
H i k , j {{\bf{H}}_{{i_k},j}} Hik?,j? 表示從基站j到用戶 i k {i_k} ik?的信道
u k , i = h k , k , i H w k , i ∑ ( j , l ) ∣ h j , k , i H w j , l ∣ 2 + σ k , i 2 {u_{k,i}} = \frac{{{\bf{h}}_{k,k,i}^H{{\bf{w}}_{k,i}}}}{{\sum\limits_{(j,l)} {{{\left| {{\bf{h}}_{j,k,i}^H{{\bf{w}}_{j,l}}} \right|}^2}} + \sigma _{k,i}^2}} uk,i?=(j,l)?hj,k,iH?wj,l?2+σk,i2?hk,k,iH?wk,i??

Lagrange dual

上海交通大學 CS257 Linear and Convex Optimization
南京大學 Duality (I) - NJU

the standard form (5.1)
在這里插入圖片描述
min ? X f ( X ) s . t . g i ( X ) ≤ 0 , ? i = 1 , … , m , \begin{array}{l} {\mathop {\min }_{\bf{X}} \;\;f\left( {\bf{X}} \right)}\\ {{\rm{s}}.{\rm{t}}.\;{g_i}\left( {\bf{X}} \right) \le 0,\forall i = 1, \ldots ,m,} \end{array} minX?f(X)s.t.gi?(X)0,?i=1,,m,?

5.1.1 The Lagrangian

在這里插入圖片描述
the dual variables or Lagrange multiplier vectors associated with the problem (5.1).

5.1.2 The Lagrange dual function

the minimum value of the Lagrangian
在這里插入圖片描述

5.2 The Lagrange dual problem

the Lagrange dual problem associated with the problem (5.1).
在這里插入圖片描述

5.2.3 Strong duality and Slater’s constraint qualification

在這里插入圖片描述

5.2.3 Strong duality and Slater’s constraint qualification

Slater’s theorem states that
strong duality holds, if Slater’s condition holds (and the problem is convex).
strong duality obtains, when the primal problem is convex and Slater’s condition holds

Slater’s Condition for Convex Problems
上海交通大學 CS257 Linear and Convex Optimization
在這里插入圖片描述

5.5.3 KKT optimality conditions

Karush-Kuhn-Tucker (KKT) conditions
在這里插入圖片描述
for any optimization problem with differentiable objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT conditions (5.49).

在這里插入圖片描述

仿真

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/206870.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/206870.shtml
英文地址,請注明出處:http://en.pswp.cn/news/206870.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

阿里云服務器經濟型、通用算力型、計算型、通用型、內存型實例區別及選擇參考

當我們通過阿里云的活動購買云服務器會發現&#xff0c;相同配置的云服務器往往有多個不同的實例可選&#xff0c;而且價格差別也比較大&#xff0c;例如同樣是4核8G的配置的云服務器&#xff0c;經濟型e實例活動價格只要1500.48/1年起&#xff0c;通用算力型u1實例要1795.97/1…

nvidia安裝出現7-zip crc error解決辦法

解決辦法&#xff1a;下載network版本&#xff0c;重新安裝。&#xff08;選擇自己需要的版本&#xff09; 網址&#xff1a;CUDA Toolkit 12.3 Update 1 Downloads | NVIDIA Developer 分析原因&#xff1a;local版本的安裝包可能在下載過程中出現損壞。 本人嘗試過全網說的…

linux 系統安全基線 安全加固操作

目錄 用戶口令設置 root用戶遠程登錄限制 檢查是否存在除root之外UID為0的用戶 ???????root用戶環境變量的安全性 ???????遠程連接的安全性配置 ???????用戶的umask安全配置 ???????重要目錄和文件的權限設置 ???????找未授權的SUID…

json轉yolo格式

json轉yolo格式 視覺分割得一些標注文件是json格式&#xff0c;比如&#xff0c;舌頭將這個舌頭區域分割出來&#xff08;用mask二值圖的形式&#xff09;&#xff0c;對舌頭的分割第一步是需要檢測出來&#xff0c;缺少數據集&#xff0c;可以使用分割出來的結果&#xff0c;將…

無公網IP環境如何SSH遠程連接Deepin操作系統

文章目錄 前言1. 開啟SSH服務2. Deppin安裝Cpolar3. 配置ssh公網地址4. 公網遠程SSH連接5. 固定連接SSH公網地址6. SSH固定地址連接測試 前言 Deepin操作系統是一個基于Debian的Linux操作系統&#xff0c;專注于使用者對日常辦公、學習、生活和娛樂的操作體驗的極致&#xff0…

數據儀表盤設計:可視化數據指標和報告

寫在開頭 在信息爆炸的時代,數據不再是簡單的數字和圖表,而是一種有機的信息體系。如何將這些琳瑯滿目的數據以一種直觀而高效的方式展示,成為企業決策者和分析師們共同關注的問題。本文將帶您深入學習如何設計和創建數據儀表盤,使數據指標和報告以一目了然的方式呈現。 …

Python---time庫

目錄 時間獲取 時間格式化 程序計時 time庫包含三類函數&#xff1a; 時間獲取&#xff1a;time() ctime() gmtime() 時間格式化&#xff1a;strtime() strptime() 程序計時&#xff1a;sleep() perf_counter() 下面逐一介紹&#…

H3.3K27M彌漫性中線膠質瘤的反義寡核苷酸治療

今天給同學們分享一篇實驗文章“Antisense oligonucleotide therapy for H3.3K27M diffuse midline glioma”&#xff0c;這篇文章發表在Sci Transl Med期刊上&#xff0c;影響因子為17.1。 結果解讀&#xff1a; CRISPR-Cas9消耗H3.3K27M恢復了H3K27三甲基化&#xff0c;并延…

Echarts地圖案例及常見問題

前言 ECharts 是一個使用 JavaScript 實現的開源可視化庫,它可以幫助用戶以簡單的方式創建復雜的時間序列、條形圖、餅圖、地圖等圖形。 Echarts繪制地圖的案例 展示了中國各省份的人口數量 var myChart = echarts.init(document.getElementById(main)); var option = {t…

【TailwindCSS】

TailwindCSS作為一種現代化的CSS框架&#xff0c;以其高度的定制性和靈活性受到前端開發者的青睞。本文旨在提供一份詳細的TailwindCSS使用教程&#xff0c;特別適用于Vite和Vue框架的組合。 我們將從安裝開始&#xff0c;深入探討如何在項目中有效利用TailwindCSS的各項功能&…

在AWS Lambda上部署標準FFmpeg工具——Docker方案

大綱 1 確定Lambda運行時環境1.1 Lambda系統、鏡像、內核版本1.2 運行時1.2.1 Python1.2.2 Java 2 啟動EC23 編寫調用FFmpeg的代碼4 生成docker鏡像4.1 安裝和啟動Docker服務4.2 編寫Dockerfile腳本4.3 生成鏡像 5 推送鏡像5.1 創建存儲庫5.2 給EC2賦予角色5.2.1 創建策略5.2.2…

【帶頭學C++】----- 九、類和對象 ---- 9.10 C++設計模式之單例模式設計

??????????????????????麻煩您點個關注&#xff0c;不迷路???????????????????????? 目 錄 9.10 C設計模式之單例模式設計 舉例說明&#xff1a; 9.10 C設計模式之單例模式設計 看過我之前的文章的&#xff0c;簡單講解過C/Q…

遙測終端機RTU:實現遠程監測和控制的重要工具

遙測終端機RTU對設備進行遠程監測和控制&#xff0c;支持采集和傳輸數據&#xff0c;以實現對工業過程、公用事業、水文和環境的監測和管理。 遙測終端機RTU工作原理 計訊物聯遙測終端機RTU通過網口、串口進行傳感器/設備等現場數據采集&#xff0c;將其轉換為數字信號&#xf…

【LeetCode】202. 快樂數

202. 快樂數 難度&#xff1a;簡單 題目 編寫一個算法來判斷一個數 n 是不是快樂數。 「快樂數」 定義為&#xff1a; 對于一個正整數&#xff0c;每一次將該數替換為它每個位置上的數字的平方和。然后重復這個過程直到這個數變為 1&#xff0c;也可能是 無限循環 但始終變…

高校網站建設的效果如何

高校有較高的信息承載需求、招生宣傳、學校內容呈現、內部消息觸達等需求&#xff0c;對高校來說&#xff0c;如今互聯網深入生活各個場景&#xff0c;無論學校發展、外部拓展還是內部師生互動、通知觸達等都需要完善。 除了傳統傳單及第三方平臺展示外&#xff0c;學校構建屬…

C#-數組池減少GC工作

數組池減少GC工作 通過ArrayPool類&#xff08;名稱空間System.Buffers&#xff09;使用數組池&#xff0c;可減少垃圾收集器的工作&#xff0c;ArrayPool管理一個數組池&#xff0c;數組可以從這租借&#xff0c;并返回池中&#xff0c;內存在ArrayPool中管理。 創建ArrayPool…

Html5響應式全開源網站建站源碼系統 附帶完整的搭建教程

Html5響應式全開源網站建站源碼系統是基于Html5、CSS3和JavaScript等技術開發的全開源網站建站系統。它旨在為初學者和小型企業提供一套快速、簡便的網站建設解決方案。該系統采用響應式設計&#xff0c;可以自適應不同設備的屏幕大小&#xff0c;提高用戶體驗。同時&#xff0…

Clean My Mac X2024解鎖完整版本

Clean My Mac X是Mac上一款美觀易用的系統優化清理工具&#xff0c;也是小編剛開始用Mac時的裝機必備。垃圾需要時時清&#xff0c;電腦才能常年新。Windows的垃圾清理工具選擇有很多&#xff0c;但是Mac的清理工具可選擇的就很少。 今天給大家推薦大名鼎鼎的Clean My Mac X&a…

elasticsearch-head 啟動教程

D:\elasticsearch-head-master>grunt server ‘grunt’ 不是內部或外部命令&#xff0c;也不是可運行的程序 或批處理文件。 npm install -g grunt-clinpm install

Leetcode—190.顛倒二進制位【簡單】

2023每日刷題&#xff08;五十二&#xff09; Leetcode—190.顛倒二進制位 算法思路 實現代碼 class Solution { public:uint32_t reverseBits(uint32_t n) {uint32_t res 0;for(int i 0; i < 32 && n > 0; i) {res | (n & 1) << (31 - i);n >&…